WARNING

Tapeswitch photo-electric safety systems are intended to protect operators working at or near dangerous machinery. They can only perform this function if they are correctly fitted to a suitable machine. It is essential that the full contents of this manual and all the international documents referred to herein are fully understood before any attempt at installation is made. If in doubt, contact Tapeswitch Corporation.

IMPORTANT

This manual must accompany the product throughout its working life. Those persons responsible for the product must ensure that all persons involved in the installation, commissioning, operation, maintenance and servicing of the product have access to all the information supplied by the manufacturers of the machine and its safety system.
TABLE OF CONTENTS

1.0 GENERAL

1.1 INTRODUCTION

1.2 PRODUCT Range

1.2.1 General

1.2.2 Detection Capability

1.2.3 Protected Heights

1.2.4 Accessories

1.2.4.1 Mirror Units

1.2.4.2 Mounting Stands

1.3 ORDERING INFORMATION

1.3.1 GS-120 Light Curtain Order Code

1.3.2 GS-120 Multi-Beam Order Code

1.3.3 Cable Options

1.3.4 Interface and Programming Units

2.0 TECHNICAL DESCRIPTION

2.1 CURTAIN

2.2 COMMUNICATIONS

2.3 TEST INPUT

2.4 INDICATORS

2.4.1 LED Option

2.4.2 Diagnostic Option

3.0 INSTALLATION

3.1 GENERAL

3.2 MECHANICAL INSTALLATION

3.2.1 General Considerations

3.2.1.1 Multi-Sided Guarding

3.2.2 Curtain Dimensions

3.2.2.1 GS-120 Basic System

3.2.2.2 GS-120 Multi-Beam System

3.2.2.3 GS-120 Cascaded System

3.2.3 Separation Distance

3.2.3.1 Normal Approach

3.2.3.2 Parallel Approach

3.2.3.3 Angled Approach

3.2.3.4 Approach to 'L' Installation

3.2.4 Optical Alignment

3.2.5 Reflective Surfaces

3.2.6 Systems in Close Proximity

3.2.7 Mounting Brackets

3.3 ELECTRICAL INTERFACE, OPERATION, AND INSTALLATION

3.3.1 General

3.3.2 Emitter Unit

3.3.2.1 General

3.3.2.2 Test Input

3.3.3 Receiver Unit

3.3.3.1 General

3.3.3.2 PNP Version

3.3.3.3 SSR Version

3.3.4 Interfacing to a Machine

3.3.4.1 PNP Version Manual Reset

3.3.4.2 PNP Version Auto Reset

3.3.4.3 SSR Version

3.4 INITIAL CHECKING AND ALIGNMENT

4.0 INTERFACE AND AUXILIARY UNITS

4.1 GENERAL

4.1.1 Methods of Interfacing

4.1.2 Special Interfacing Considerations
4.1.2.1 PNP Version Manual Reset
4.1.2.2 PNP Version Auto Reset
4.1.2.3 SSR Version
4.1.3 Connections to an AS-i System

5.0 PERIODIC CHECKING, SERVICING, AND MAINTENANCE
5.1 PERIODIC CHECKING
5.1.1 Commissioning Checks
5.1.2 6 or 12 Month Periodic Checks
5.1.3 Daily/Setting Examination
5.1.4 Checking Detection Capability
 5.1.4.1 GS-120 System
 5.1.4.2 GS-120 Multi-Beam System
5.2 SERVICING
5.3 MAINTENANCE

6.0 TECHNICAL SPECIFICATIONS (GS-120 Series Emitter & Receiver)
APPENDIX A: BSRSA INTERFACE UNIT
APPENDIX B: BSRUA-2 INTERFACE UNIT
APPENDIX C: SRUB INTERFACE UNIT
APPENDIX D: SRUS INTERFACE UNIT
APPENDIX E: C6 MULTIFUNCTION INTERFACE CONTROLLER
APPENDIX F: GDC-1 24 VDC POWER SUPPLY
APPENDIX G: LAT LASER ALIGNMENT TOOL
1.0 GENERAL

1.1 INTRODUCTION

Tapeswitch GS-120 light curtains are through-beam photo-electric machine guarding devices, designed to protect operators working at or near dangerous machinery. They meet the requirements for EN61496 Type 2 light curtains and Category 3 safety control units as defined in EN954-1.

When correctly installed on a suitable machine, the system will detect a person (or part of a person) entering a dangerous area in the vicinity of the machine, and will signal the dangerous motion to cease before that person can reach a position where injury could occur.

Tapeswitch GS-120 light curtains use infra-red technology. A curtain of infra-red light is projected across the dangerous area. Intrusion into this curtain by a person or part of a person will be detected by the system. This will cause safety output signals to be generated which will stop the dangerous motion of the machine.

WARNING

The information in this manual relates to the use of the basic GS-120 light curtain, to provide a basic safety switching device.

In some applications, a GS-120 light curtain may be used together with other Tapeswitch equipment to provide additional functions and features. The additional information necessary for the correct use of a GS-120 light curtain when used with other Tapeswitch equipment is provided within this manual.

In such cases, some installation parameters, notably the mounting position of the light curtain in relation to the dangerous part of the machine, can be affected and close attention must be paid to all the information supplied with all equipment.

INTERNATIONAL CONSIDERATION: The heritage of the Tapeswitch GS-120 system is strongly grounded in international commerce and standards. They were developed by Tapeswitch Ltd., of Chorley, England. Both Tapeswitch Ltd. and Tapeswitch U.S. are part of Indel Corporation, a private U.S industrial group. The GS-120 product line was developed to meet published and proposed safety standards for the United States, Germany, England, Finland, and Sweden, as well as the common market unified standard. GS-120 systems are manufactured both in England and the United States. Tapeswitch GS-120 products have been independently third party tested to IEC 61496 by BG, and are certified to this standard (CE approval/certification). Contact Tapeswitch for more details.

Tapeswitch can provide additional assistance to customers wishing to use GS-120 guards in international applications. Some foreign language technical manuals are available.

1.2 PRODUCT RANGE

1.2.1 GENERAL

The GS-120 light curtains are available in a range of different protected heights and detection capabilities. These two parameters are known by many other names and therefore it may be useful to define them here, as they are intended to be used in this manual. To make this clearer it is also necessary to define two further parameters, detection zone and operating range:

Detection Zone: This is the actual curtain of infra-red light generated between the emitter and receiver units within which an appropriately dimensioned object will be reliably detected and, for the GS-120, can be considered to be a two dimensional, rectangular plane (see Figure 1).

Operating Range: One dimension of the detection zone rectangle is given by the distance between the emitter and receiver units. This is the operating range (see Figure 1).

Protected Height: The other dimension of the detection zone rectangle is commonly known as the protected height. The word "height" has been adopted in the latest standards for this equipment because most curtains are mounted vertically. The protected height is often related to, but is not the same as, the length of the emitter and receiver units (see Figure 1).
Detection Capability: This is the minimum dimension of an opaque object which will be reliably detected anywhere within the detection zone.

NOTE: The spacing or pitch of the beams or lenses in a light curtain is not the same as the detection capability. The detection capability is always greater than the spacing or pitch. Spacing or pitch should not be used in the calculation of separation distances (see Figure 2).

1.2.2 DETECTION CAPABILITY

GS-120 light curtains are available with detection capabilities of 30mm or 70mm.

<table>
<thead>
<tr>
<th>Detection Capability</th>
<th>Nominal protected heights (in mm and inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30mm (1-3/16 in.)</td>
<td>200-300-400-600-800-900-1000-1200-1400-1600 mm</td>
</tr>
<tr>
<td></td>
<td>(8-12-16-24-32-36-40-48-56-64-72 inches)</td>
</tr>
<tr>
<td>70mm (2-3/4 in.)</td>
<td>600-800-1000-1200-1400-1600-1800 mm</td>
</tr>
<tr>
<td></td>
<td>(24-32-40-48-56-64-72 inches)</td>
</tr>
</tbody>
</table>

The minimum separation distance is 0.5 m.

Note:
The actual protected height is 8 mm greater than the nominal protected height.

1.2.4 ACCESSORIES

1.2.4.1 Mirror Units

A range of mirror units are available to enable a single curtain to be used to guard two or three sides of a machine or to avoid structural obstructions.

The mirror assembly consists of a high quality silver-backed glass mirror adhesively attached to a length of extruded aluminum. Two pivot brackets are bolted to the aluminum extrusion and can be adjusted anywhere along the length for mechanical attachment. The actual length of the mirror is 4 inches (1000mm) larger than the active curtain length to accommodate a wide tolerance for height alignment. All of the necessary hardware is supplied to facilitate mounting to the mounting/floor stands. The dimensions of the pivot brackets, extruded aluminum and overall mirrors are shown below in millimeters.

Figure 1

Figure 2

Object ØY - at least one beam is always totally obscured, therefore object is reliably detected.

Object ØX - in this position no beams are totally obscured, therefore object may not be detected.

X= Spacing or pitch
Y= Detection capability
Supplied with:
1. 1-40mm x 40mm extrusion, 100mm larger than protective height.
2. 1-silver backed mirror, 100mm larger than protective height.
3. 2-pivot joints.
4. 2-40mm x 40mm end covers.
5. 4-5mm T slot nuts.
6. 4-#12 flat washers.
7. 4-5mm spring washers.
8. 4-5mm x 5/8 hex bolts.

<table>
<thead>
<tr>
<th>Curtain Lengths</th>
<th>Mirror Assembly Length</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mm - 8"</td>
<td>300mm - 12"</td>
<td>0960</td>
</tr>
<tr>
<td>300mm - 12"</td>
<td>400mm - 16"</td>
<td>0961</td>
</tr>
<tr>
<td>400mm - 16"</td>
<td>500mm - 20"</td>
<td>0962</td>
</tr>
<tr>
<td>600mm - 24"</td>
<td>700mm - 28"</td>
<td>0963</td>
</tr>
<tr>
<td>800mm - 32"</td>
<td>900mm - 36"</td>
<td>0964</td>
</tr>
<tr>
<td>900mm - 36"</td>
<td>1000mm - 40"</td>
<td>0965</td>
</tr>
<tr>
<td>1000mm - 40"</td>
<td>1100mm - 44"</td>
<td>0966</td>
</tr>
<tr>
<td>1200mm - 48"</td>
<td>1300mm - 52"</td>
<td>0967</td>
</tr>
<tr>
<td>1400mm - 56"</td>
<td>1500mm - 60"</td>
<td>0968</td>
</tr>
</tbody>
</table>

For units greater than 56 inches, custom mirrors are available.
1.2.4.2 Mounting Stands

Floor mounting stands are available for use where the guard cannot be mounted directly to the machine.

The mounting stand set includes a floor-mounted base into which the 5-foot mounting post can be secured. The floor base is steel and can be permanently mounted to the floor surface with the pre-drilled mounting holes. The post is extruded aluminum with slots to allow the light curtain to be positioned anywhere along its length. The mounting stands are supplied with all of the necessary hardware to facilitate mounting a standard GS-120 light curtain. Leveling bolts allow for minor adjustments to the floor stand orientation.

![Mounting Stand Diagram]

P/N 0957

Supplied with:
1. 5 ft. item 40mm X 40mm extrusion
2. 1-base stand.
3. 1-40mm X 40mm end cap.
4. 2-T slot nuts M5.
5. 2-M5 X12mm hex head.
6. 2-M5 spring lock washers.
7. 2-flat washers 5/5.3mm.
8. 2-5/16 bolts.
9. 3-3/8 24 x 1/2" hex head.

1.3 ORDERING INFORMATION

Part numbers for the various models are shown in the table on the right. To fully specify a model and its options use an order code as shown in sections 1.3.1 and 1.3.2 on the following page.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-120/8"(208mm)/30</td>
<td>0801</td>
</tr>
<tr>
<td>GS-120/12"(308mm)/30</td>
<td>0802</td>
</tr>
<tr>
<td>GS-120/16"(408mm)/30</td>
<td>0803</td>
</tr>
<tr>
<td>GS-120/24"(608mm)/30</td>
<td>0804</td>
</tr>
<tr>
<td>GS-120/32"(808mm)/30</td>
<td>0805</td>
</tr>
<tr>
<td>GS-120/36"(908mm)/30</td>
<td>0806</td>
</tr>
<tr>
<td>GS-120/40"(1008mm)/30</td>
<td>0807</td>
</tr>
<tr>
<td>GS-120/48"(1208mm)/30</td>
<td>0808</td>
</tr>
<tr>
<td>GS-120/56"(1408mm)/30</td>
<td>0809</td>
</tr>
<tr>
<td>GS-120/64"(1608mm)/30</td>
<td>0810</td>
</tr>
<tr>
<td>GS-120/72"(1808mm)/30</td>
<td>0811</td>
</tr>
<tr>
<td>GS-120/24"(608mm)/70</td>
<td>0821</td>
</tr>
<tr>
<td>GS-120/32"(808mm)/70</td>
<td>0822</td>
</tr>
<tr>
<td>GS-120/40"(1008mm)/70</td>
<td>0823</td>
</tr>
<tr>
<td>GS-120/48"(1208mm)/70</td>
<td>0824</td>
</tr>
<tr>
<td>GS-120/56"(1408mm)/70</td>
<td>0825</td>
</tr>
<tr>
<td>GS-120/64"(1608mm)/70</td>
<td>0826</td>
</tr>
<tr>
<td>GS-120/72"(1808mm)/70</td>
<td>0827</td>
</tr>
<tr>
<td>GS-120-4</td>
<td>0828</td>
</tr>
<tr>
<td>GS-120-3</td>
<td>0829</td>
</tr>
<tr>
<td>GS-120-2</td>
<td>0830</td>
</tr>
</tbody>
</table>
1.3.1 GS-120 LIGHT CURTAIN ORDER CODE

Outputs:
PNP = 2 x PNP outputs
SSR = 2 x Solid-State Relays

Curtain Type:
S = Single Unit
M = Master Unit
A = Slave Unit
D = Double-Ended Slave Unit

Curtain Length:
200 mm to 1800 mm

Detection Capability:
30 mm or 70 mm

Curtain Display:
LED - Discrete LEDs
DIAG - Dot Matrix Diagnostic Display

Bracket options:
CB = Clamp Bracket
AB = Adjustable Bracket
EB = End Cap Bracket

1.3.2 GS-120 MULTI-BEAM ORDER CODE

Outputs:
PNP = 2 x PNP outputs
SSR = 2 x Solid-State Relays

Curtain Type:
S = Single Unit
M = Master Unit
A = Slave Unit
D = Double-Ended Slave Unit

Number of Beams:
2
3
4

Curtain Display:
LED - Discrete LEDs
DIAG - Dot Matrix Diagnostic Display

Bracket options:
CB = Clamp bracket
AB = Adjustable bracket
EB = End cap bracket
1.3.3 CABLE OPTIONS

Cable assemblies are used to connect the GS-120 emitter and receiver units to a controller or machine. The emitter has a 5-wire cable and the receiver has an 8-wire cable. One end of each cable has a keyed quick-disconnect connector and the other end is unterminated. The cables are IP68 rated, and UL and CSA recognized.

Order cable options using the following part numbers:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter Cable, 15 ft, 5 Conductor</td>
<td>0972</td>
</tr>
<tr>
<td>Emitter Cable, 30 ft, 5 Conductor</td>
<td>0973</td>
</tr>
<tr>
<td>Emitter Cable, 98 ft, 5 Conductor</td>
<td>0976</td>
</tr>
<tr>
<td>Receiver Cable, 15 ft, 8 Conductor</td>
<td>0974</td>
</tr>
<tr>
<td>Receiver Cable, 30 ft, 8 Conductor</td>
<td>0975</td>
</tr>
<tr>
<td>Receiver Cable, 98 ft, 8 Conductor</td>
<td>0977</td>
</tr>
</tbody>
</table>

1.3.4 INTERFACE AND PROGRAMMING UNITS

(See electrical interface and operation for technical details)

Order interface and programming units using the following part numbers:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSRSA</td>
<td>Wall-mounted box 110/240 Vac or 24 Vdc</td>
<td>0950</td>
</tr>
<tr>
<td>BSRUA-2</td>
<td>DIN rail mount 110/240 Vac or 24 Vdc</td>
<td>0951</td>
</tr>
<tr>
<td>SRUB</td>
<td>DIN rail mount 24 Vdc</td>
<td>0952</td>
</tr>
<tr>
<td>SRUS</td>
<td>DIN rail mount 24 Vdc</td>
<td>0949</td>
</tr>
<tr>
<td>C6</td>
<td>Wall-mounted box Multi-zone</td>
<td>0480</td>
</tr>
<tr>
<td>GDC1</td>
<td>24 Vdc power supply</td>
<td>0953</td>
</tr>
<tr>
<td>LAT</td>
<td>Laser alignment tool</td>
<td>0956</td>
</tr>
</tbody>
</table>

2.0 TECHNICAL DESCRIPTION

2.1 CURTAIN

A basic GS-120 light curtain consists of two units: an emitter unit and a receiver unit. Both units are identical in shape and size. The units are enclosed in a robust extruded aluminum section with reinforced composite end covers.

The emitter and receiver units together generate a curtain of infra-red light between them. This curtain is mounted in such a position in relation to the dangerous parts of a machine that a person or part of a person approaching those dangerous parts must first penetrate the curtain. This penetration is detected by the light curtain system and, by means of its output switching devices, the light curtain system causes the dangerous parts to go to a safe state (e.g. by stopping moving parts) before the person can reach them.

IMPORTANT

From the information above, it can be seen that safe use of a light curtain relies not only on the safety integrity of the curtain itself but also on its proper mechanical and electrical interfacing to the machine.

The safety integrity of the light curtain itself is the responsibility of Tapeswitch and the remainder of this section describes the features of the design by which safety integrity is ensured.

Proper mechanical and electrical interfacing of the overall system is the responsibility of the user. Comprehensive information for this purpose is provided in sections 3 and 4 of this manual.

The emitter unit contains a number of infra-red light emitting diodes (LEDs). The quantity and spacing of these LEDs depends on the protected height and the detection capability of the particular light curtain. The devices are arranged equally-spaced in an array.

The receiver unit contains a corresponding number of infra-red photodiodes similarly arranged.
Each LED and photodiode is fitted with a precision lens, which produces an evenly intense, slightly diverging beam of infra-red light from each LED and an evenly sensitive, slightly converging ‘reception cone’ into each photodiode. This arrangement provides a high signal-to-noise ratio and maximum operating range for the system together with ease of alignment and rejection of extraneous reflected light sources.

The function of each LED and photodiode is controlled by its own dedicated, specially-designed ASIC (Application Specific Integrated Circuit). All the circuitry necessary for the operation of an LED or photodiode is contained within this single component, resulting in a very low component count and consequent improvement in system reliability.

For each LED in the emitter unit there is a corresponding photodiode at the same relative position in the receiver unit. Each LED/photodiode pair makes a ‘beam’ and the curtain is made up of a number of such beams, all parallel to each other. (See Figure 3.)

![Figure 3](image)

Only one LED and one photodiode are active at any time. The emitter unit runs independently from the receiver unit. There are no connections between the units.

The emitter unit activates each of its LEDs in turn and the receiver unit synchronizes with the emitter unit.

Each receiver ASIC, in its turn, generates an output signal which is proportional to the level of infra-red it receives from its corresponding LED. Signals from other sources, such as background lighting, are filtered out inside the ASIC.

There is one microprocessor in the emitter unit and two in the receiver unit. All three microprocessors perform exhaustive checks on their own hardware and software, prior to and during operation.

The two in the receiver unit continually communicate their results to each other such that if a fault occurs in one device the other can shut the system down.

In the receiver unit there are two independent switching channels each containing an output signal switching device (OSSD). Each of the two microcontrollers in the receiver unit controls one of these OSSDs and monitors the other.

The OSSDs are very robust solid state devices. These devices are intended to be connected directly to the machine control system, a Tapeswitch interface unit or a suitable safety relay such that if one or both of them are in the OFF state, the machine will go to or remain in a safe condition, for example, by stopping dangerous motion or by preventing dangerous motion from starting.

2.2 COMMUNICATIONS

The receiver unit incorporates a serial communications port. Various auxiliary Tapeswitch units can be connected to this port for the purposes of programming functions within the light curtain and for interrogating the system.

No equipment other than Tapeswitch brand should be connected to this port. Full instructions for the use of this port with auxiliary equipment are provided within this manual.

2.3 TEST INPUT

A pair of terminals is provided across which a pair of normally closed, volt free contacts should be connected. When these contacts are opened the emitter unit will stop scanning, forcing the OSSDs to the OFF state. This input simulates a curtain obstructed condition.

NOTE: This input is provided to allow the GS-120 to be used with machine control systems which need to cycle the safety circuit prior to operation. The GS-120 system itself does not require this input to be used. If this input is not used it should be jumpered and remain jumpered at all times.
2.4 INDICATORS

2.4.1 LED OPTION

The standard/master receiver unit has four status indicators as shown in Figure 4. The standard/master emitter unit has two status indicators as shown in Figure 5. The slave emitter and receiver have one status indicator as shown in Figure 6.

A description of each indicator is given in Table 1.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard/Master Emitter</td>
<td>Amber</td>
<td>Lit when power is connected to unit.</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Lit steady when test input is applied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lit flashing when emitter unit detects a problem.</td>
</tr>
<tr>
<td>Standard/Master Receiver</td>
<td>Amber</td>
<td>Lit when power is connected to unit.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Lit when curtain is clear.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Lit when curtain is obstructed or when test input from emitter is applied.</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Lit when receiver is in a blanking mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lit flashing when receiver unit detects a problem.</td>
</tr>
<tr>
<td>Slave Emitter</td>
<td>Amber</td>
<td>Lit when power is connected to unit.</td>
</tr>
<tr>
<td>Slave Receiver</td>
<td>Amber</td>
<td>Lit when power is connected to unit.</td>
</tr>
</tbody>
</table>

Table 1 – LED Indicator Descriptions
2.4.2 DIAGNOSTIC OPTION

For this option, the LED indicators on the standard and master emitter units and all slave units are the same as shown for the LED option above in Figures 4, 5, and 6. However, the standard and master receiver units contain a scrolling 4-digit alphanumeric display, shown in Figure 7, which is used for diagnostic purposes.

The various displays and their meanings are shown in Table 2.

![Diagnostic Receiver](image)

<table>
<thead>
<tr>
<th>Displays in normal operation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PNPA</td>
<td>PNP Auto restart mode</td>
</tr>
<tr>
<td>PNP M</td>
<td>PNP Manual restart mode</td>
</tr>
<tr>
<td>SSR</td>
<td>Volt-free relay mode</td>
</tr>
<tr>
<td>Waiting for EDM</td>
<td>In Auto restart mode, outputs are off because the feedback from external device monitoring is not present.</td>
</tr>
<tr>
<td>Waiting for Restart</td>
<td>In Manual restart mode, outputs are off because the restart signal has not been received</td>
</tr>
<tr>
<td>Bxxx</td>
<td>The curtain is obstructed and beam number xxx is the first beam broken</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faults with possible external causes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete curtain</td>
<td>Shows that the timing signal from the last beam in the curtain is not being received. This would be displayed if, for example, a master curtain had no slave connected.</td>
</tr>
<tr>
<td>O/P A Hi</td>
<td>A possible short-circuit from Output A to +24Vdc</td>
</tr>
<tr>
<td>O/P A Lo</td>
<td>A possible short-circuit from Output A to 0V</td>
</tr>
<tr>
<td>O/P B Hi</td>
<td>A possible short-circuit from Output B to +24Vdc</td>
</tr>
<tr>
<td>O/P B Lo</td>
<td>A possible short-circuit from Output B to 0V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal Faults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR XX</td>
<td>Fault not serviceable in the field. Return to vendor for repair.</td>
</tr>
</tbody>
</table>

Table 2 – Diagnostic Displays
3.0 INSTALLATION

3.1 GENERAL

WARNING

Tapeswitch GS-120 systems are designed to protect operators working at or near dangerous machinery. They can only perform this function if they are correctly fitted and interfaced to a suitable machine. Those persons responsible for the machine must ensure that all persons involved in the installation of the photo-electric safety system have the necessary knowledge, training and experience and that they are fully aware of all laws, rules, regulations and codes of practice pertaining to their task.

The attention of the installer is drawn to following general requirements for the installation of a GS-120 system:

(a) The dangerous motion of the machine must be electrically controllable.

(b) The machine response/stopping performance must be adequate and consistent.

(c) It must be possible to stop the dangerous motion of the machine at any point in its operation, in any operating mode.

(d) The control system as a whole must be designed and constructed to provide the appropriate category of safety integrity as defined in EN954-1 ‘Safety of machinery: Principles for the design of safety related control systems’. The appropriate category should be as prescribed in the relevant C type EN standard for the type of machine concerned. In the absence of such a standard the appropriate category of safety integrity should be determined by performing a risk assessment as described in EN1050 ‘Safety of machinery: Risk assessment’

(e) Steps must be taken to prevent access to the dangerous parts of the machine from any direction not covered by the photo-electric curtain. Such steps could include fixed or interlocking fences or screens, additional photo-electric devices or pressure sensitive mats. Similar steps should be taken to prevent a person from standing between the curtain and the dangerous parts of the machine.

(f) No devices other than those specified in this manual should be connected to the internally-generated power supply of the system.

(g) After installation, the machine/guard system must be commissioned in accordance with the requirements of section 5.1.1 of this manual.

(h) Any covers removed during installation must be replaced as soon as possible.

(i) At power on, after a power interruption or after the curtain has been actuated, it must not be possible for the machine to start (or restart) until a manual control has been operated. This is known as “start/restart interlock”. The GS-120 can provide this function, but if it is not installed, it must be provided elsewhere within the safety system.

(j) To avoid nuisance tripping, if a fluorescent lamp with an electronic ballast is located within 5 feet (1.5 meters) of the receiver unit, it must be outside of a 20º field of view from the receiver unit (±10º about the center line). If this is not practical, a 60 Hz fluorescent light fixture should be used.

3.2 MECHANICAL INSTALLATION

3.2.1 GENERAL CONSIDERATIONS

ANSI B11.19-1990 gives guidance on the dimensions and positioning of photo-electric safety devices fitted to industrial machines. The main considerations are described below and are illustrated in Figure 8.

(a) The appropriate protected height must be selected. The curtain must be of sufficient height such that access to the dangerous parts, from the direction of approach of the operator, is only possible by obstructing the curtain taking into account all possible operator positions.

(b) The correct minimum separation distance must be observed. The curtain must be mounted in the correct position in relation to the dangerous parts of the machine to take account of the stopping performance of the machine, the curtain format used and the detection capability of the curtain.

(c) Steps must be taken to prevent access to the dangerous parts from any direction not covered by the curtain and to prevent an operator from standing between the curtain and the dangerous parts of the machine.
The physical parameters affecting the positioning are the dimensions of the detection zone of the light curtain (i.e. the protected height and the range) and the minimum separation distance. These are described in the following sections.
3.2.1.1 Multi-Sided Guarding

By using mirror columns the light curtain beams can be deflected around corners to form two and three sided guard configurations. It should be borne in mind that for each mirror used the range is reduced by approximately 20%. Also the alignment of systems with mirrors can be difficult especially where the mounting surfaces are uneven. It is therefore recommended that no more than two mirrors are used between any pair of emitter and receiver units. See Figures 9, 10, and 11 for different multi-sided guarding configurations.

Note: The arrangement shown in Figure 11 is not recommended, as it is very difficult to determine that the safety distance S is correct.
3.2.2 CURTAIN DIMENSIONS

3.2.2.1 GS-120 Basic System

The curtain dimensions are defined by the protected height and the range (i.e. the distance between the emitter and receiver units). The protected height must be selected to suit the application. The minimum range for all systems is 500 millimeters. The maximum range for systems with 30mm or 70mm detection capability is 15 meters (50 feet).

All the dimensions relating to the curtain, for each of the GS-120 systems are shown in Figure 12. The upper and lower boundaries of the curtain are indicated by arrows on the front window labels of each unit.

Figure 12

Dimensions shown in mm

45

36

48

X + 8

X + 80

14mm detection < 6 meters (18 feet)
30 or 70mm detection <13 meters (39 feet)

X = Nominal curtain length (e.g. 200mm (8’’), 400mm (16’’), 600mm (24’’), etc.)
3.2.2.2 GS-120 Multi-Beam System

All the dimensions relating to the curtain, for each of the Multi-beam systems (or multi-beam slave systems) are shown in Figure 13.
3.2.2.3 GS-120 Cascaded System

Additional flexibility to facilitate guarding in more than one plane is provided, by the capability to connect slave units to a basic or multi-beam master system.

The slave units can be basic or multi-beam systems, with any of the defined detection characteristics of 30mm or 70mm.

The dimensions relating to the curtains, for each slave unit are as defined in the previous sections for each model. The upper and lower boundaries of each curtain are indicated by arrows on the front window labels of each unit.

A maximum of two sets of slave units can be connected to a master system as shown in Figure 14. Each emitter-receiver pair has a type designation where:
- Type GS-120/M is a master
- Type GS-120/A is a slave
- Type GS-120/D is a slave with a connector at each end

Master and slave units can be assembled up to a maximum of 240 beams. Where:

- 30mm detection - 12 beams per 200mm curtain
- 70mm detection - 4 beams per 200mm curtain

Examples:
- GS-120/M/1000/30 = 60 beams
- GS-120/A/0400/70 = 8 beams
- So, total = 68 beams

Notes:
1. When master/slave emitter-receiver sets have different range capabilities, these must be respected when systems are configured.
2. When master/slave emitter-receiver sets have different detection capabilities, the separation distance must be calculated and adhered to for each set separately.
3.2.3 SEPARATION DISTANCE

Any machine, regardless of the efficiency of its braking system, will take a certain time to come to rest after a stop signal is generated.

The time from the instant that the curtain is broken to the instant that dangerous motion actually ceases is called the “overall system response time”. The dangerous parts will obviously continue to move during this time. The curtain must therefore be positioned at a certain minimum distance from the dangerous parts to prevent a person who has obstructed the curtain from reaching the dangerous parts before they have stopped.

This distance is the “minimum separation distance” and is defined as the distance, in the direction of approach, between the physical point at which the curtain detects an obstruction and the nearest dangerous parts.

ANSI B11.19-1990 provides guidelines on how to determine the minimum separation distance for a given application. Tapeswitch GS-120 systems are primarily intended for use in normal approach format where the curtain is perpendicular to the direction of approach, although they can be used in parallel and angled approach formats.

3.2.3.1 Normal Approach

Normal approach format is shown in Figure 15. For normal approach format the inner edge of the front window of each unit (i.e. the edge which is nearest to the machine) should be considered to be the point at which an obstruction is detected. See plane X as shown in Figure 15.

The effective sensing field of the device shall be located at a distance from the nearest recognized hazard such that the operator or others cannot reach the hazard with a hand or other body part before stopping of the motion during the hazardous portion of the machine cycle.
The minimum separation distance depends on the application. The following formula should be used when calculating this distance:

\[D_s = K \times (T_s + T_R + T_C + T_{BM}) + D_{PF} \]

where:

- **D_s**: Minimum separation distance between the device and the nearest point of operation hazard in inches.
- **K**: Hand speed constant. See note.
- **T_s**: Stop time of the machine tool measured at the final control element.
- **T_R**: Response time of the presence-sensing device and its interface, if any, as stated by the manufacturer or as actually measured.
- **T_{BM}**: Additional time allowed for the brake monitor (if used) to compensate for variations in normal stopping time.
- **D_{PF}**: Added distance due to the penetration factor, as recommended in the illustration below. The minimum object sensitivity is stated by the manufacturer. If beam blanking or floating window features are used, these figures should be added to the object sensitivity figure before using the chart.

NOTE: The value of the hand speed constant, \(K \), has been determined by various studies. Although these studies indicate speeds of 63 in/sec to over 100 in/sec, they are not conclusive determinations. The employer should consider all factors, including the physical ability of the operator, when determining the value of \(K \) to be used.

The following table shows the minimum object sensitivity in inches for different detection ranges:

<table>
<thead>
<tr>
<th>DPF (inches)</th>
<th>Detection (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
</tr>
</tbody>
</table>

\[\text{Penetration Factor } D(pf) \text{ in Inches} \]
3.2.3.2 Parallel Approach

Parallel approach format is shown in Figure 16. For parallel approach format the outer curtain detection limit (as shown on the front window of each unit) minus the detection capability, should be considered to be the point at which an obstruction is detected. See Plane X in Figure 16.

For this type of protective equipment, the height \(H \) of the detection zone shall not exceed 1000mm. If \(H \) is greater than 300mm (200mm for non-industrial applications), the risk of undetected access beneath the detection zone should be considered.
3.2.3.3 Angled Approach

If it is necessary to install the curtain, at an angle to the direction of approach as shown in *Figure 17*, then the following requirements apply:

An angle within ±5° of normal or horizontal, need not be considered to be angled, and the relevant formula used.

For detection zones which are positioned at angles greater than ±5°, to the direction of approach, account shall be taken of the risks associated with the direction of approach, and the most appropriate formula used.

![Figure 17](image)

3.2.3.4 Approach to ‘L’ Installation

If vertical and horizontal master/slave GS-120 light curtains are used together as in *Figure 18*, where the vertical curtain is the main trip curtain and the horizontal curtain performs presence sensing inside it, the separation distance calculations for the vertical curtain are used. However, the detection capability calculations of the horizontal curtain with respect to its height should also be observed. Note: Where master/slave combinations are used:

\[
\text{Total Response} = \text{Master Unit Response} + \text{Slave Unit Response}
\]

\[
\text{Total Time} = \text{Master Unit Time} + \text{Slave Unit Time}
\]

![Figure 18](image)
3.2.4 **OPTICAL ALIGNMENT**

The emitter and receiver units should be mounted facing each other at the same height with their axes aligned. Misalignments, as illustrated in **Figure 19**, should be avoided. Tapeswitch offers a laser alignment tool to add visible assistance over longer range or when mirrors are used. See section 4 for detailed information.

3.2.5 **REFLECTIVE SURFACES**

There should be no reflective surfaces within the 'field of view' of the curtain units. Reflective surfaces within the field of view can lead to non-detection of an obstruction. The field of view of each of the emitter and receiver units is approximately 5 degrees either side of the optical axis.

A minimum distance from the optical axis to any reflective surface must be observed. This distance depends on the actual operating distance and must take into account possible misalignment. This is illustrated in **Figure 20**. The distance should be determined as follows:

- Operating distance $L < 3\text{m}$: $X < 260 \text{ mm}$
- Operating distance $L > 3\text{m}$: $X > 0.0874L \text{ mm}$
3.2.6 SYSTEMS IN CLOSE PROXIMITY

In order to avoid nuisance interference between adjacent systems, whenever two or more emitter-receiver pairs are used within each other's sensing range, ensure that the front window of any unit is not within the field of view of units of the opposite type from other systems.

This can be achieved by ensuring that units of the same type are mounted facing in opposite directions. See Figure 21.

![Figure 21](image)

3.2.7 MOUNTING BRACKETS

Mounting brackets and their associated hardware are provided with the emitter and receiver units. The brackets have been specially designed to allow adjustment.

Each unit is supplied with two clamp brackets fitted, one at each end. The clamp bracket is a short piece of extruded aluminum which is designed to interlock with the unit housing extrusion and to clamp in position on the rear of the housing by means of two set screws. The set screws can be tightened or loosened with a 2mm Allen wrench, which is supplied with the unit. The clamp bracket can be slid up and down the emitter and receiver units to facilitate alternate positioning of the bracket. The clamp brackets are a tight fit on the emitter and receiver units and may require some force to slide them up and down on. The clamp bracket dimensions are shown in Figure 22.

The clamp brackets can be moved to any position over the length of the unit, but it is recommended that they be kept in the supplied position.

![Figure 22](image)
This makes replacement of a unit much easier as the new unit will have the brackets already in the correct position. The position of the clamps on the units is shown in Figure 23.

The set screws may not be completely tightened in the supplied position. These set screws must be fully tightened before proceeding with the installation. (A 2 mm Allen wrench is supplied for use in tightening the brackets.) If these brackets are not properly secured, the emitter and receiver units may shift causing nuisance tripping, a false lock-out condition and/or a potential safety hazard.

Four wall brackets are supplied with each system together with the 8 self-tapping screws needed to fix the wall brackets to the clamp brackets. The wall bracket dimensions are shown in Figure 24.

The alternative mounting arrangements which these brackets facilitate are shown in Figures 25, 26, & 27.

The internal construction of the units is such that they can withstand normal levels of vibration and shock. In situations where the vibration of the machine cannot be reduced to normal levels, vibration proofing mountings should be used.

Figure 23

Figure 24
TYPE AB - MOUNTING BRACKETS

Type AB adjustable mounting brackets are an optional choice for GS-120 Light Curtains. Combining a robust design and quick release capability, these brackets allow for speedy installation and easy interchange of a light curtain unit without the need for re-alignment. To request this option when ordering your light curtain please specify "AB" in your order code.

(part number 0978)
3.3 ELECTRICAL INTERFACE, OPERATION, and INSTALLATION

This section is divided into two parts. The first part discusses the interface and operation of the GS-120 system when the basic set (emitter and receiver) is interfaced directly to the machine control circuitry by means of the redundant solid state outputs.

The second section discusses the interface when any one of the various Tapeswitch control units is used.

The basic GS-120 system consists of an emitter and receiver. The receiver unit provides two safety outputs. These fail-safe outputs are solid-state PNP transistors and are actively monitored and short-circuit protected. The two outputs are independent of each other and represent part of the redundancy of the overall light curtain system. The outputs must always be in the same state (i.e., both outputs either on or off). If one output should fail in the “on” position, the other output will remain in the “off” position until the failure is corrected. In order to maintain redundancy both outputs must be interfaced to independent switching devices in the machine control circuit (i.e., safety relays, emergency stop relay packages, fail-safe PLC’S, etc.).

Both outputs must be used. The solid state outputs can be interfaced directly to the machine control circuit provided this circuitry is compatible with the PNP-type output. A number of manufacturers produce units containing circuits of this type. Care should be taken to ensure that the inputs of these units can accept the PNP outputs of the light curtain.

- The maximum current is 0.1 A.
- The output voltage, \(U_a \), of each output is dependent on the supply, \(U_v \) and the load and is given by the following expression \(U_a > U_v - 2v \).
- If the solid state outputs are used directly, the supply voltage to the light curtain (emitter and receiver) must be common to the supply voltage of the device to which it will be interfaced.
- Both outputs must be used to maintain redundancy.
- Each output should be wired to independent switching devices in the machine control circuit and SHOULD NOT BE CONNECTED TOGETHER.

NOTE: The pair of solid state outputs are constantly monitored and are designed to act as a single component in a fail-safe condition (i.e., if one of the outputs fails in the “on” position, the other output will revert to the “off” position.

This output will remain “off” until the integrity of the other output is restored. This level of integrity must be maintained throughout the machine control circuit. It is the responsibility of the end user to assure any fault within the safety circuit is detected and that it puts the machine in a safe condition.

3.3.1 GENERAL

Both units must be supplied with 24 Vdc ± 20%. This DC supply must be isolated by means of a safety transformer which conforms to the requirements of IEC61558-2-6. The emitter, receiver and interface unit must use the same + 24V DC supply. The negative side of the supply should be grounded and the cables should be routed separately from power and motor drives.

The maximum cable length for each unit is 30 meters.

The power consumption is dependent on the protected height of the system but is less than 12 VA.

The emitter and receiver should be powered by a common DC supply and connected to the system ground. If power is removed from the emitter only the system may not automatically re-synchronize, and may require power removal from the receiver as well in order to establish optical communication and synchronization. Power can be removed from the receiver unit without any consequence to the synchronization.

IMPORTANT

Power should be applied to both units at the same time. If power is removed from the emitter unit, power must also be removed from the receiver unit.

3.3.2 EMITTER UNIT

3.3.2.1 General

The emitter unit has a five-pin male quick-disconnect connector. Two pins for the DC supply, two for the test input (see 3.3.2.2), and one for the ground. (protective earth PE)

To connect to the emitter, a 5-pin female molded cable assembly is necessary. This cable assembly is supplied separately and is available in lengths of 15 feet (p/n 0972), 30 feet (p/n 0973), or 98 feet (p/n 0976). This cable has an insulated jacket with color coded wires. The cable has a fixed molded connector on one end and flying leads at the other. The colors and corresponding functions are shown in Figures 28 and 29.
3.3.2.2 Test Input

On some machines, a test input is used to check the interface between the photo-electric safety device and the machine. The input simulates the obstruction of the curtain in order to cycle the output switching elements and thereby expose any fault before the next machine cycle. This input is applied during a safe part of the machine cycle or at the end of the cycle.

If this function is used, a normally closed contact should be connected as shown in Figure 29.

This contact must open for a minimum of 100ms. When this contact is opened, the light curtain safety outputs will be switched off and will remain off until the test contact closes again and the curtain self-tests have been successfully performed (assuming that the curtain is not obstructed).

If the test input is not used, this input must be jumpered.

NOTE: If the emitter cable is removed during normal operation, the system will not return to normal operation once the emitter is reconnected until power is cycled on the receiver.

3.3.3 RECEIVER UNIT

3.3.3.1 General

The GS-120 is available with two output modes, PNP and SSR, as shown in the order codes in section 1.3. The PNP version has cross-monitored 24Vdc PNP outputs, start/restart interlock and the ability to monitor contacts from external devices (EDM). The SSR version has volt-free contacts which are closed when the curtain is clear, but does not have any start/restart interlock function. This must be provided elsewhere in the safety system. The receiver connector is shown in Figure 30.

The 24Vdc supply must have a 2A quick blow in-line fuse fitted.
3.3.3.2 PNP Version

3.3.3.2.1 Safety Outputs

This version has two 24 Vdc PNP outputs. The two output signal switching devices (OSSDs) should be wired to independent switching devices in the machine control circuit. The OSSDs are solid-state devices and are internally monitored and short-circuit protected. The connections for the PNP version of the receiver are shown in Figure 31.

The maximum current is 0.1A.

The output voltage, UA, of each OSSD is dependent on the supply, UV, and the load which is given by the following expression:

\[U_A > U_V - 2V \]

![Figure 31- PNP Version Receiver Connections](image)

3.3.3.2.2 Start/Restart and External Device Monitoring (EDM)

In the PNP mode the GS-120 can be set up for either manual or automatic start and restart. This function is determined by the connections to the unit. In manual mode, the outputs will only switch on when the curtain is clear and a reset switch is closed and then opened. In automatic mode the outputs will be on whenever the curtain is clear and off whenever the curtain is obstructed.

The GS-120 also has the ability to monitor external devices. This is achieved by using normally-closed contacts of the external device and monitoring that they are closed before allowing the outputs to switch from off to on. The various wiring configurations for these options are shown in Figures 32 to 35.

![Figure 32 – Auto Restart](image)

![Figure 33 - Auto Restart with EDM](image)

![Figure 34 – Manual Restart](image)
3.3.3.3 SSR Version

This version has two voltage-free solid-state outputs. It operates in automatic mode, so the outputs will be on whenever the curtain is clear and off whenever the curtain is obstructed. See Figure 36.

![Diagram of SSR Version Wiring]
3.3.4 INTERFACING TO A MACHINE

The interfacing of a light curtain to a machine can be achieved by using discrete components or by means of an interface unit such as the Tapeswitch SRUB.

All the relays shown are safety relays with positively guided contacts. If this circuit is implemented using discrete components, it is essential that this type of relay is used.

3.3.4.1 PNP Version Manual Reset

It may be possible to connect the GS-120 directly to the Machinery Primary Control Elements (MPCE) as shown in Figure 37. The GS-120 provides the Start/Restart function necessary to avoid unintended initiation of the machine.

Note: N/C contacts of K1 and K2 are used for monitoring purposes. If EDM is carried out elsewhere, the reset switch should be connected between pin 2 and pin 6 of the Receiver unit.

IMPORTANT

A number of manufacturers produce units containing circuits of this type. Care should be taken to ensure that the inputs of these units can accept the PNP outputs of the light curtain.

![Figure 37 – PNP Version Manual Reset](image-url)
3.3.4.2 PNP Version Auto Reset

The GS-120 can be used in Auto Restart mode as shown in Figure 38. If this mode is selected, the Manual Restart function must be provided elsewhere in the machine safety control system (for example, in the SRUB interface unit).

Note: The connection through 41 and 42 is used for external monitoring (EDM). If an alternative safety relay is used which does not have N/C contacts for monitoring, then connect pin 2 to pin 6 on the Receiver unit.

IMPORTANT

A number of manufacturers produce units containing circuits of this type. Care should be taken to ensure that the inputs of these units can accept the PNP outputs of the light curtain.

![Figure 38 – PNP Version Auto Reset](image)
3.3.4.3 SSR Version

The interfacing of a GS-120 light curtain to a machine can be achieved by means of an interface unit such as the Pilz PNOZ 8. The circuit diagram for the PNOZ 8 and the typical connections to the GS-120 light curtain and the machine are shown in Figure 39 below.

A number of manufacturers produce units containing circuits of this type. Care should be taken to ensure that the inputs of these units can accept the volt-free outputs of the light curtain, and that the outputs of the light curtain are wired with one channel "pull up" and one channel "pull down" so as to maintain the failure mode integrity.

Figure 39 – SSR Version
3.4 INITIAL CHECKING AND ALIGNMENT

The procedure for alignment is described below.

Apply power to the GS-120 system.

The amber indicators on the emitter and receiver units should be lit. If either of the indicators is not lit, check the wiring.

The yellow indicators on the emitter and the receiver units should be in the off state. If either of these two indicators is flashing, there is a fault, contact your Tapeswitch distributor. If the yellow indicator on the emitter unit is on constantly, check the wiring as described in sections 3.3.2 and 3.3.3.

The green indicator on the receiver unit should be lit, if not, adjust the units into general alignment until the green indicator comes on.

Adjust the units to optimum alignment as follows:

1. Slowly turn the emitter unit clockwise until the green indicator on the receiver unit goes off and the red indicator comes on. (Note this position.)
2. Then turn the emitter unit counter-clockwise, again until the green indicator goes off and the red indicator comes on. (Note this position.)
3. Set the emitter at the center of the two noted positions.
4. Repeat steps 1, 2 and 3 but this time turning the receiver unit.

Using the test piece provided, obstruct the curtain. On the receiver unit the green indicator should go off and the red indicator comes on.

Move the test piece in and out of the curtain several times and check that the indicators change state appropriately each time.

See section 5.2 of this manual if the system does not function as described above.

The installation of the machine can now be completed. Before putting the machine into use, the complete system (i.e. the machine and all its safeguarding devices) should be commissioned by qualified personnel and, as a minimum, the commissioning checks described in section 5.1.1 of this manual should be performed.

Periodic checks in accordance with section 5.1.2 should be carried out at the prescribed intervals. Daily checks to be performed on the GS-120 system are detailed in section 5.1.3 of this manual. In some cases there are specific statutory requirements concerning the examination, inspection and test of a machine and its safety devices. It is for the user to determine if such requirements exist for the machine in question and to ensure that those requirements are met.
4.0 INTERFACE AND AUXILIARY UNITS

4.1 GENERAL

In applications where the two PNP or solid state outputs are not suitable for the machine control circuit, an interface unit must be utilized. This interface unit may be user supplied, provided it is compatible with either the PNP or SSR outputs and has two channels. A number of manufacturers produce units containing circuits of this type. The interface unit must be designed to the same level of integrity as the GS-120 in order to maintain the same overall level of safety.

Several Tapeswitch interface units are available which offer options in configuring the input power source, mounting package and type of electrical interface desired. All of the units perform the actual switching of the electrical circuit of the dangerous machine using positively-guided safety relays. All of the ac-powered interface units (BSRSA and BSRUA-2) provide the stepped-down +24 Vdc power for the GS-120 emitter and receiver pair. The dc-powered interface units, (SRUB and SRUS), are powered by an external +24 Vdc power supply and this supply must also power the GS-120 emitter and receiver pair. All of the interface units provide isolation from the low amperage GS-120 solid state outputs (0.5 A each) and the potentially higher amperage required by the machine control circuitry. Each interface unit provides LED status indicators. All LEDs will be discussed in the description of the applicable interface units. These units are described in the appendices of this document.

4.1.1 METHODS OF INTERFACING

All of the interface units have a minimum of two safety outputs. These outputs are to be interfaced with the machine primary control elements (MPCEs). An MPCE is defined as an electrically controlled element which directly controls the normal operating motion of a machine such that it is the last (in time) to operate when motion is initiated or arrested.

The safety output contacts of the interface unit must be connected to a machine's MPCEs in such a way that if either of the safety output relays is switched off, then the machine will be brought to rest, regardless of the state of the other relay.

This gives assurance that the failure of a single relay cannot prevent the machine from being stopped. The safety output relays are cross-monitored within the interface unit. This means any disparity between the two relays will be detected. The machine will be disabled until the cause of the disparity has been removed. Such a disparity could be the loss of signal on one of the two channels coming from the light curtain.

The interface will only allow the safety relays to move to the ON state if both channels are working correctly together.

All interface units are provided with indicator lamps which show the status of the interface. The number, color, meaning and location of the indicators may change with the type of interface. All interfaces however, have indicators which specifically show the commanded state of the output safety relays.

Both of these outputs must be used to take advantage of the inherent redundancy of the interface unit.

The two safety outputs are normally (NO). The outputs are closed when no obstructions are in the light curtain and no faults exist. Once the light curtain is broken the outputs open. The state of the output may remain open until a reset switch is applied (MANUAL RESET) or will automatically close (AUTOMATIC RESET) once the light curtain is cleared. Details of the resetting features are discussed in the individual interface sections found in the appendices.

The safety outputs can be used in several ways, depending on the MPCEs found on the machine being guarded. MPCE is the abbreviation for Machine Primary Control Element. An MPCE is an electrically-powered control device which directly controls the guarded machines motion and is the final device in the operating sequence when motion is either initiated or halted. This would be the main hydraulic control valve in a hydraulically controlled press. Some of the common arrangements are described below:

• Normal risk machines - These usually have a single MPCE. In this case both normally open safety outputs should be used together as shown in Figure 40.

• High risk machines - These should have 2 MPCEs. In some countries, it is customary for both MPCEs to operate in the same mode. In this case, each of the normally open (NO) outputs controls a single MPCE. See Figure 41 for an illustration of the type of interface. Any additional output contacts can be used as a monitor, e.g. as an input to a PLC.

To protect the contacts of the safety output relays from the effects of switching inductive loads, an appropriately rated power factor correction device must be installed across the MPCE coils. Figures 40 and 41 show Arc Suppressors used for this purpose. Arc Suppressors are user supplied.
CAUTION

Arc Suppressors must not be connected across safety relay contacts.

SAFETY FUSES: It is good practice to protect the safety relays against welding due to a current surge. This can be done by current limiting designs in the machine’s controls, or by simple fusing as shown in Figure 40 and 41. The current through the safety output contacts should be limited to a level below that which could cause the contact to weld. Fuses with a current rating less than that of the output contacts should be used.

On the BSRSA Interface Unit, these safety (output protection) fuses are part of the unit. All of the other interface units do not provide safety fuses (output protection) and these fuses should be supplied externally by the user.

4.1.2 SPECIAL INTERFACING CONSIDERATIONS

4.1.2.1 PNP Version Manual Reset

It may be possible to connect the GS-120 directly to the Machinery Primary Control Elements (MPCE). The GS-120 in this configuration provides the Start/Restart function necessary to avoid unintended initiation of the machine.

4.1.2.2 PNP Version Auto Reset

The GS-120 can be used in Auto Restart mode. If this mode is selected, the Manual Restart function must be provided elsewhere in the machine safety control system (for example, in the SRUB interface unit).

4.1.2.3 SSR Version

The interfacing of a GS-120 light curtain with SSR outputs requires a controller that is compatible with these devices. Care should be taken to ensure that the inputs of this unit can accept the volt-free outputs of the light curtain, and that the outputs of the light curtain are wired with one channel "pull up" and one channel "pull down" so as to maintain the failure mode integrity.
4.1.3 CONNECTIONS TO AN AS-i SYSTEM

A GS-120 system can be connected to an AS-i Safe System using standard AS-i Safe I/O modules as shown in Figure 42.

The connection of the Emitter and Receiver units to the system is simply achieved by plugging into standard AS-i components using the cables supplied.

Note: The power supply leads of the GS-120 system should **not** be connected directly to the YELLOW AS-i cable as this may cause AS-i data transmission problems. It is recommended that this connection be made using a decoupling network.

Alternatively the guard can be connected to the BLACK AS-i cable (the auxiliary power cable).

![Connecting a GS-120 to an AS-i System](image-url)
5.0 PERIODIC CHECKING, SERVICING, AND MAINTENANCE

5.1 PERIODIC CHECKING

5.1.1 COMMISSIONING CHECKS

The commissioning examination should be carried out by persons who are competent and who possess all the information supplied with the machine and its safety equipment. The results of the examination should be recorded and copies of this record should be kept by the user and the employer of the person performing the examination. The person carrying out the examination should ensure that the following general standard of performance is met:

(a) It should not be possible for the dangerous parts of the machine to be set in motion while the light curtain is penetrated.

(b) Penetration of the light curtain during a dangerous phase of the operation of the machine should result in the dangerous parts being arrested or, where appropriate, assuming an otherwise safe condition, before any part of a person can reach them. It should not be possible for the dangerous parts to be set in motion until the curtain has been cleared, the safety system has been restored to its normal condition, and the machine controls have been reset.

The person performing the examination should also:

(c) Inspect the position of the light curtain to ensure that it is set at the correct distance from the dangerous parts of the machine as recorded on the machine information label or plate.

(d) Ensure that additional safeguarding measures have been provided where necessary to prevent access to the dangerous parts of the machine not protected by the light curtain.

(e) Where appropriate, test the overall system response time using a suitable device and ensure that it is the same or less than that recorded on the machine information label or plate.

(f) Test the detection capability of the light curtain as described in section 5.1.4 of this manual.

(g) Examine the machine controls and connections to the GS-120 system to ensure that the requirements described in this manual and in the machine manual have been met.

(h) Examine the stopping performance monitor (if installed) to ensure that it is installed and functioning correctly. Ensure that the means whereby the stopping performance can be assessed by the operator is indicating correctly.

(i) Test the muting arrangements (if installed).

(j) Examine brakes or clutches (if installed) as recommended.

NOTE: No stopping performance monitor or muting facility is provided with the basic GS-120 system and there is no means provided for the connection of such devices to the system. These devices may however have been provided elsewhere in the machine control system.

5.1.2 6 OR 12 MONTH PERIODIC CHECKS

These examinations should be carried out by competent persons. The results should be recorded and a copy kept by the user.

The person should ensure that the general standard of performance as described in section 5.1.1 (a) and (b) is achieved.

The person should perform the commissioning inspections and tests detailed in section 5.1.1. When checking the stopping performance monitor, item (h), any equally effective means of determining that the overall system response time, as recorded on the machine information label or plate, is not exceeded is acceptable.

In addition the person should:

(a) Examine all switching elements in the switching paths controlled by the light curtain outputs to ensure that they are functioning correctly and are not in need of maintenance and or replacement.

(b) Inspect the machine to ensure that there are no mechanical or structural aspects which could prevent the machine from stopping or assuming an otherwise safe condition when called upon to do so.

(c) Examine and inspect the machine controls and the connections to the GS-120 system to ensure that no modifications have been made which could adversely affect that system, and that suitable modifications have been correctly performed and properly recorded.
5.1.3 DAILY/SETTING EXAMINATION

The following tests should be carried out daily by a designated person appointed by the machine user. The results should be recorded and a copy should be kept on or near the machine. Specific statutory requirements may apply to certain types of machines. The designated person should:

(a) Check that access to the dangerous parts of the machine is not possible from any direction not protected by the light curtain and that side and rear guards are in order.

(b) Check that the minimum distance from the dangerous parts of the machinery to the light curtain is not less than the distance stated on the machine information label or plate.

(c) Check that it is not possible for a person to stand between the dangerous parts of the machine and the light curtain.

(d) Check that when the muting facility (if installed) is operative, the moving parts are no longer dangerous.

(e) Check that the stopping performance monitor (if installed) is in use and is set up and functioning correctly.

(f) Check that electrical enclosures are closed and locked and that any keys have been removed for retention by a designated person.

(g) Check for external signs of damage to equipment or to electrical wiring.

(h) Check the detection capability of the GS-120 as described in section 5.1.4.

5.1.4 CHECKING DETECTION CAPABILITY

5.1.4.1 GS-120 System

The detection capability of the light curtain should be checked as required in the previous sections using the method described below. See Figure 43.

(a) With power applied to the GS-120 system and with the machine at rest, check that the light curtain is functioning by observing the state of the appropriate indicators. The green indicator should be on and the red indicator should be off.

(b) Insert the test piece provided with the 30 mm model into the light curtain beams. The axis of the test piece should be perpendicular to the plane of the light curtain. Starting at the top of the emitter unit, position the test piece less than 150 millimeters from the emitter surface, and pass it slowly down the front of the unit. While the full diameter of the test piece is within the area defined by the two arrow markers on the front window, the green indicator should GO OFF AND REMAIN OFF and the red indicator should BE LIT AND REMAIN LIT.

(c) Repeat the above test with the test piece inserted close to the front of the receiver unit and with the test piece inserted at the midpoint between the emitter and receiver units. The indicators should behave as described above whenever the test piece is between the arrow markers.

WARNING

At no time while the test piece is obstructing the curtain should the green indicator come on. If it does, the machine must be isolated and must not be used until the cause has been investigated.

(d) If the system passes the above tests proceed as follows. Initiate a cycle of the machine and then insert the test piece into the curtain. Upon insertion of the test piece during dangerous motion, the dangerous parts should come to rest without apparent delay.

WARNING

If the machine does not stop or there is any delay in its response, the machine must be isolated and must not be used until the fault has been rectified.
5.1.4.2 GS-120 Multi-Beam System

The operation of the light curtain should be checked as required in the previous sections using the method described below and as shown in Figure 44.

(a) With power applied to the GS-120 system and with the machine at rest, check that the light curtain is functioning by observing the state of the appropriate indicators. The green indicator should be on, and the red indicator should be off.

(b) To test the curtain is operating correctly, insert your hand in between the emitter and receiver units and obstruct one of the beams. While the beam is obstructed, the green indicator should GO OFF AND REMAIN OFF and the red indicator should BE LIT AND REMAIN LIT. Move your hand in and out of the beam several times and check that the indicators change state each time as appropriate.

(c) Repeat the above test for each of the beams. The indicators should behave as described above whenever the beams are obstructed.

WARNING

At no time while a beam is obstructed should the green indicator come on. If it does, the machine must be isolated and must not be used until the cause has been investigated.

(d) If the system passes the above tests proceed as follows. Initiate a cycle of the machine and then insert your hand into the curtain. Upon insertion of your hand during dangerous motion, the dangerous parts should come to rest without apparent delay.

WARNING

If the machine does not stop or there is any delay in its response the machine must be isolated and must not be used until the fault has been rectified.
5.2 SERVICING

The GS-120 system is designed to be serviced at unit level. There are no user-serviceable parts within the units.

When a safety-critical fault occurs in the GS-120 system or in the machine interface, the machine will be disabled. It is first necessary to establish whether the fault is in the GS-120 system or in the machine interface.

Use Tables 1 and 2 in section 2.4 and Table 3 below to identify faults within the GS-120 system.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>STATE OF INDICATORS</th>
<th>CAUSE(S)</th>
<th>ACTIONS(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter</td>
<td>Amber LED not lit.</td>
<td>No power to unit</td>
<td>Connect power</td>
</tr>
<tr>
<td></td>
<td>Red LED lit steady</td>
<td>Test input is open</td>
<td>Close test input</td>
</tr>
<tr>
<td></td>
<td>Red LED flashing</td>
<td>Emitter unity faulty</td>
<td>Replace emitter unit</td>
</tr>
<tr>
<td>Receiver</td>
<td>Amber LED not lit.</td>
<td>No power to unit</td>
<td>Connect power</td>
</tr>
<tr>
<td></td>
<td>Red LED fully lit (no obstruction of curtain)</td>
<td>Units out of alignment</td>
<td>Check alignment</td>
</tr>
<tr>
<td></td>
<td>Red LED lit open on emitter</td>
<td>Test input open on emitter</td>
<td>Check emitter red LED</td>
</tr>
<tr>
<td></td>
<td>Emitter unit faulty</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No power on emitter unit</td>
<td></td>
<td>Check emitter amber LED</td>
</tr>
<tr>
<td></td>
<td>Yellow LED flashing</td>
<td>Receiver outputs are shorted</td>
<td>Remove short between outputs</td>
</tr>
<tr>
<td></td>
<td>Yellow LED Steady</td>
<td>Light Curtain has been programmed</td>
<td>Reconnect hand held blanking unit and re-configure to correct setting</td>
</tr>
</tbody>
</table>

Table 3 – Fault Table

NOTE: The emitter and receivers are not matched pairs. They become mated pairs only upon power up. It is not necessary to replace both units, should one become faulty.

5.3 MAINTENANCE

There are no mechanical, electrical or optical adjustments necessary. Apart from occasionally cleaning of the windows on the emitter and receiver units, GS-120 systems are maintenance free. Use a soft, lint-free cloth and an anti-static cleaner.

Do not use solvents of any kind.
6.0 TECHNICAL SPECIFICATIONS (Basic GS-120, Emitter and Receiver ONLY)

<table>
<thead>
<tr>
<th>Light Curtain & Multi-Beam Systems</th>
<th>S</th>
<th>Single Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Master Unit</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Auxiliary Slave Unit</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Double-Ended Slave Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light Curtain & Multi-Beam Systems Operating Range</th>
<th>Detection</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>30mm</td>
<td>0.5m to 15m</td>
<td></td>
</tr>
<tr>
<td>70mm</td>
<td>0.5m to 15m</td>
<td></td>
</tr>
<tr>
<td>2 beam</td>
<td>0.5m to 30m</td>
<td></td>
</tr>
<tr>
<td>3 beam</td>
<td>0.5m to 30m</td>
<td></td>
</tr>
<tr>
<td>4 beam</td>
<td>0.5m to 30m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light Curtain Systems Protected Height</th>
<th>30mm</th>
<th>200 to 1800mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70mm</td>
<td>600 to 1800mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multi-Beam Systems Beam Spacing</th>
<th>2 beam</th>
<th>500mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 beam</td>
<td>400mm</td>
</tr>
<tr>
<td></td>
<td>4 beam</td>
<td>300mm</td>
</tr>
</tbody>
</table>

Detection Capability of Light Curtains: 30mm or 70mm

Number of Beams in Multi-Beam Systems: 2, 3 or 4

Effective Aperture Angle: ± 5°

Response Time:
- 30mm detection: 20ms up to 600mm curtain. Additional 4ms for each 200mm of curtain.
- 70mm detection: 20ms up to 1800mm curtain. Additional 4ms for each 600mm of curtain.
- Multi-Beam: 20ms

Supply Voltage: 24V d.c. ±20%, 5% maximum residual ripple

Power Consumption: < 12VA

Enclosure Rating: IP65

Radiation Wavelength: 880nm

Type: Class 1 LED product (IEC60825-1)

PNP Version
- Type: Solid state PNP
- Capacity: 0.1A max
- Voltage: Supply voltage minus 2V

SSR Version
- Type: Solid state Volt-free relay
- Capacity: 0.1A max
- Voltage: 48V (ac or dc) max
- on-resistance: 20ohm max

Standards applied: EN61496 Type 2 & EN954-1 Category 3

Operating Temperature: 0°...50° C

Storage Temperature: -20°...70° C

Humidity: 15% to 95% non-condensing

Weight (each unit): 0.3kg plus 0.2kg per 100mm of curtain

Dimensions - cross section: 36 x 45 mm
APPENDIX A – BSRSA INTERFACE UNIT

1.0 GENERAL DESCRIPTION

The BSRSA interface unit is designed as a standalone control panel. It interfaces a GS-120 light curtain (emitter and receiver) with the guarded machine’s controls.

2.0 OPERATIONAL SEQUENCE AND LED STATUS DESCRIPTION

When power is first applied to the light curtain system via the BSRSA:

- A red LED (H3) on the BSRSA controller should illuminate indicating that the control unit has power.

- No power will be supplied to the emitter or receiver of the light curtain and the output status indicators in the BSRSA controller will not be illuminated. All of the outputs will be de-energized and the output contacts will be open, until a reset has been applied.

- Reset the system by the front panel key switch or the external remote reset, if used. See below for details. After the reset switch is released, both the emitter and receiver units of the light curtain should have amber indicators illuminated which shows that power has been applied. If the light curtain is properly aligned, the receiver should have a green LED illuminated which shows the light curtain is clear. If the receiver shows a red LED illuminated, then the light curtain is either not properly aligned, faulty, or obstructed. Once the units are properly aligned and any obstructions are removed, the green LED should be illuminated and the receiver LEDs should follow the state of the light curtain (green indicates curtain clear and red indicates curtain is blocked, obstructed, or misaligned). With the green LED illuminated on the receiver, the output status indicator on the BSRSA controller should be green (H2). The output status indicator on the BSRSA controller will be red (H1) when the curtain is blocked, obstructed, or misaligned.

The redundant safety outputs will follow the state of the light curtain, i.e., if the light curtain is clear; safety outputs 1 & 2 will be closed (energized), but if the light curtain is obstructed, safety outputs 1 & 2 will be open (de-energized). The safety outputs reset automatically the light curtain is cleared again. The safety outputs will not reset (close/energize) if a fault exists.

The lockout contact will close (energize) once the reset sequence has been completed. It will remain closed at all times unless a fault has occurred or power has been removed. The lockout contact does not follow the state of the light curtain. Once the lockout condition occurs (loss of power or failure) it will be necessary to reset the system.

The monitoring output will follow the state of the safety outputs and should be used for non-safety functions (i.e. indication and status).

- External remote reset can be accomplished by connecting a normally-open, momentary-contact switch to terminal X2 between connections 1 and 2. (This will operate in conjunction with or replace the front panel key reset switch.)

3.0 MECHANICAL INFORMATION

Figure 45 shows the metal enclosure size and mounting dimensions of the BSRSA interface unit. The dimensions are in inches. The BSRSA enclosure is rated for the operating environments found in most manufacturing plants. Figure 46 shows an internal view of the BSRSA interface unit.
4.0 ELECTRICAL CONNECTIONS

The BSRSA interface unit has four internal terminal strips, designated X1, X2, X6, and X7. Each connection point is mechanically suitable for (1) 2.5mm², 14 AWG wire. Crimped ferrules or tinning must be used on all stranded wires. Figure 47 shows the system block diagram for the BSRSA controller.

Terminal X7 is for AC input power. Terminal X6 is for the +24 Vdc power input. All connections between the BSRSA interface unit and the GS-120 light curtain emitter and receiver units are made at terminal X2. All connections between the BSRSA interface unit and the machine’s control are made at terminal X1. Figure 48 show details of the connections for the power, output, and reset functions.

The interconnection diagram (Figure 49) and the wire run list (WRL) (Figure 50) show the proper terminal numbers and associated functions for the cabling between the GS-120 emitter and receiver units and the BSRSA interface unit. Be sure to observe the color coding shown to assure proper operation.

The metal enclosure has four double knockouts capable of accepting standard ½” or ¾” conduit fittings. It is recommended that any high voltage connection to the BSRSA control unit be made with suitable cabling and/or conduit protections. The connections between the BSRSA and the GS-120 emitter and receiver units are non-hazardous, low-voltage signals and additional protection of these cables is not necessary. It is recommended that suitable fittings or cable grips be used to maintain the moisture integrity of the installation. It is strongly recommended that the low-voltage connections be separated from the high-voltage connections. Local electrical codes should be observed.

5.0 FUSES

The BSRSA is equipped with four fuses, F1, F2, F3, and F4. See Figure 46 for the location of these fuses. Fuse F1 is a 500 mA, 250 Vac slow-blow type, and is intended to protect from potential shorts and surges on the high voltage side of the interface unit. Fuse F2 is a 1.2 A, 250 Vac quick-blow type and is intended to protect from potential shorts in the low voltage, 24 Vdc, circuitry of the interface unit. Fuses F3 and F4 are output protection fuses. These fuses are 3.15 A, 250 Vac slow-blow types, and protect the safety output relay contacts from welding due to current surges or excess loading. Care should be taken to replace any fuses with the correct rating. While replacing any fuses, particular attention should be given to the fuse holder. Excess stress on the fuse holders during replacement can lead to intermittent connections, which may cause nuisance tripping and/or a nuisance lock-out condition.
6.0 TEST INPUT

The BSRSA interface includes a test input. This input is used to check the interface between the photo-electric safety system and the machine. It electrically simulates an obstruction in the light curtain. While in the normal or run mode, the test input is jumpered (closed). It is opened and closed when used for testing. The machine’s control logic can verify that the safety output relays did, in fact, cycle, thereby exposing any fault before the next machine cycle.

This test should be conducted during a safe part of the machine cycle, or at the end of the cycle. While the test input is opened, power is removed from the light curtain (both emitter and receiver). Once the test input is closed, power is restored to the light curtain. The emitter and receiver may take a few seconds to re-synchronize, and, consequently, the safety outputs may take a few seconds to resume their normal state. The device connected to the test input should have a dry contact which is closed during the run mode and momentarily opened during the test mode.

The test input is located on terminal XI, connections 9 and 10. If the test input is not utilized, a jumper should be installed across these connections. (This feature is seldom used and, therefore, a removable jumper is installed at the factory.)

7.0 MONITOR/AUXILIARY OUTPUT

A non-safety monitor/auxiliary output is also provided. This is a solid state relay output which is closed when the light curtain is clear and is open when the light curtain is obstructed, a fault exists, or a lockout condition is present. This output is provided on terminal X1, locations 1 and 2. This output can be used for display and status indication purposes. It must not be used for safety-related machine control and switching functions.

8.0 TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Data</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 VAC</td>
<td>+ 10%</td>
<td>- 15%</td>
</tr>
<tr>
<td>240 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 VDC</td>
<td>+ 10%</td>
<td>- 15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety Outputs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Positively guided, forced contact</td>
<td></td>
</tr>
<tr>
<td>Contacts</td>
<td>Two (NO) for use with FSDS (Final Switching Devices) One (NO) for lockout use, (Secondary Switching Device)</td>
<td></td>
</tr>
<tr>
<td>Rating</td>
<td>4.0 A resistive load @ 240VAC 4.0 A resistive load @ 24VDC 5 Hz maximum rate</td>
<td></td>
</tr>
<tr>
<td>Fusing</td>
<td>Two (2), 3.15Amp, internal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor/Auxiliary Output</th>
<th>0.5 Amp, 48 VDC 10 Watt max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>9.50 in. (241mm) high 7.00 in. (178mm) wide 4.12 in. (105mm) deep</td>
</tr>
<tr>
<td>Weight</td>
<td>Approximately 7 lbs.</td>
</tr>
<tr>
<td>Enclosure Rating</td>
<td>NEMA TYPE 1 (standard) NEMA TYPE 12 (available)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connecting Terminals</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Captive terminals, with removable headers</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>One 2.5mm sq. (AWG 14)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 48 - BSRSA Terminal Numbers and Functions

NOTE: Connection from the emitter and receiver is made to terminal X2, see Figure 44 for details.
Figure 49 – Light Curtain to BSRSA Interconnection Diagram
<table>
<thead>
<tr>
<th>Cable #</th>
<th>Cable Type</th>
<th>Color Code</th>
<th>Function</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKT5-612/XX</td>
<td>5 Pin Quick Disconnect</td>
<td>Brown</td>
<td>+24VDC</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>W1</td>
<td>White</td>
<td>White</td>
<td>OV DC</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>W1</td>
<td>Blue</td>
<td>Blue</td>
<td>Test Out</td>
<td>3) Jumper 3 to 4, if not used</td>
<td>No Connection</td>
</tr>
<tr>
<td>W1</td>
<td>Black</td>
<td>Black</td>
<td>Test In</td>
<td>4) Jumper 4 to 3, if not used</td>
<td>No Connection</td>
</tr>
<tr>
<td>W1</td>
<td>Gray</td>
<td>Gray</td>
<td>Ground</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>8 Pin Quick Disconnect</td>
<td>White</td>
<td>OV DC</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>W2</td>
<td>Brown</td>
<td>Brown</td>
<td>24VDC</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>W2</td>
<td>Green</td>
<td>Green</td>
<td>Ground</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>W2</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Output 1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>W2</td>
<td>Gray</td>
<td>Gray</td>
<td>Output 2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>W2</td>
<td>Pink</td>
<td>Pink</td>
<td>Data (-)</td>
<td>6) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2</td>
<td>Blue</td>
<td>Blue</td>
<td>Data (+)</td>
<td>7) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2</td>
<td>Shield</td>
<td>Shield</td>
<td>Ground</td>
<td>8</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Figure 50 – Wire Run List for BSRSA
APPENDIX B – BSRUA-2 INTERFACE UNIT

1.0 GENERAL DESCRIPTION

The BSRUA-2 interface unit is designed to be incorporated into the user's machine control system. It interfaces either one or two GS-120 light curtains with the protected machine's controls.

2.0 OPERATIONAL SEQUENCE AND LED STATUS DESCRIPTION

2.1 CONFIGURED FOR ONE LIGHT CURTAIN

When power is first applied to the light curtain system:

- Two amber LEDs on the BSRUA-2 Controller should illuminate, indicating that the control unit has power (system status LEDs for channel 1 & channel 2).
- Power is automatically applied to the emitter and receiver units and, if the system is properly connected and aligned (see the following wiring information), and the light curtain is clear with no faults, the BSRUA-2 controller should have two green LEDs illuminated. These LEDs indicate the output status (for channel 1 and channel 2) is "on" and the redundant output safety relays are in the “on” state or closed. The outputs will remain closed until an obstruction or fault occurs in the light curtain. When a light curtain is obstructed, both red LEDs will illuminate and flash. These LEDs indicate the output status (channel 1 and channel 2) is "off" and the redundant output safety relays are in the “off” state or opened.

The outputs will remain opened until the light curtain is clear. The outputs follow the state of the light curtain and reset AUTOMATICALLY without any operator intervention. It is important to note that although a green LED status indicator may be illuminated, the redundant safety outputs may actually be off as a result of the other light curtain being obstructed. The LEDs are designed to assist the user determine which light curtain has caused the output to go to the off state.

It is important to note that although a green LED status indicator may be illuminated, the redundant safety outputs may actually be off as a result of the other light curtain being obstructed. The LEDs are designed to assist the user determine which light curtain has caused the output to go to the off state.

The outputs will remain opened until both light curtains are clear. The outputs follow the states of the light curtains and reset AUTOMATICALLY without any operator intervention. It is important to note that the BSRUA-2 does not distinguish between a light curtain fault, obstruction, misalignment, or wiring error. All of these conditions cause the BSRUA-2 to respond as if a light curtain is obstructed, and the redundant safety outputs will be in the “off” state (opened).

2.2. CONFIGURED FOR TWO LIGHT CURTAINS

When power is first applied to the light curtain system:

- Two amber LEDs on the BSRUA-2 Controller should illuminate indicating that the control unit has power (system status LEDs for channel 1 and channel 2).
- Power is automatically applied to the emitters and receivers on both light curtains, and, if the system is properly connected and aligned (see the following wiring information), and the light curtains are clear with no faults, the BSRUA-2 Controller should have two green LEDs illuminated. These LEDs indicate the output status (for channel 1 and channel 2) is “on” and the redundant output safety relays are in the “on” state or closed. The outputs will remain closed until an obstruction or fault occurs in either of the two light curtains. When a light curtain is obstructed, the corresponding red LED will illuminate and flash. These LEDs indicate the output status (both redundant safety outputs are “off”), and also identify which light curtain (emitter 1/receiver 1 or emitter 2/receiver 2) has been obstructed. Channel 1 flashing red indicates that light curtain one has been obstructed, and channel 2 flashing red indicates that light curtain two has been obstructed. For the light curtain which is unobstructed, the green output status LED will remain steadily lit.

3.0 MECHANICAL INFORMATION

Figure 51 shows the case size and mounting dimensions of the BSRUA-2 interface unit. All dimensions are in millimeters. The unit must be mounted in an enclosure rated for the known operating environment. In most cases, the unit will fit into an existing machine’s control unit panel. The unit snaps onto a common electrical mounting rail, style DIN EN 50 022-35.
4.0 ELECTRICAL CONNECTIONS

Figure 51 also shows the 32 integral connection terminals, in two rows along the top of the interface unit. The terminals are numbered 1 to 32. Each terminal is suitable for up to two (2) 2.5mm² (14 AWG) solid wires. Crimped ferrules or tinning must be used on all stranded wires.

Figures 52 and 53 show system block diagrams for the BSRUA-2 Controller. Figure 52 shows the configuration for one light curtain. Figure 53 shows the configuration for two light curtains. Figure 54 shows the terminal numbers for the input and output functions (Input Power, ac/dc, and the redundant safety outputs). These functions and terminal numbers are the same for either the one or two light curtain configuration. The necessary jumpers for the different configurations are noted. They must be installed properly in order to insure the correct and safe operation of the system. Some jumpers may be factory installed, and the user must insure that the unit is configured properly for the intended use.

All connections between the BSRUA-2 and the light curtain(s) must be made with the proper emitter and receiver cables (ordered separately).

For the case where one light curtain is used, refer to Figures 55 and 56. These show the interconnection diagram and the wire run list (WRL) and give the proper terminal numbers and their associated functions for the cabling between the GS-120 Series emitter and receiver units and the BSRU-2A controller.

For the case where two light curtains are used, refer to Figures 57 and 58. These show the interconnection diagram and the wire run list (WRL) and give the proper terminal numbers and their associated functions for the cabling between the GS-120 Series emitter and receiver units and the BSRU-2A controller.

Be sure to observe the color coding shown to assure proper operation.
5.0 FUSES

The BSRUA-2 is equipped with two fuses, F1 and F2. Both fuses are located on the top of the Din Rail enclosure. These fuses are secured with a spring-loaded twist mechanism. They are easily accessed with a common flathead screw driver. Fuse F1 is a 1 amp, 250 Vac, quick-blow type, and is intended to protect from potential shorts and surges on the high-voltage side of the interface unit. Fuse F2 is a 2 amp, 250 Vac quick-blow type, and is intended to protect from shorts and surges in the low-voltage, 24 Vdc circuitry of the interface unit. It is recommended that external fuses be used to prevent the safety output contacts from welding (as described in section 4.1.1 of the main document).

6.0 TEST INPUT

The BSRUA-2 interface provides a test input for each light curtain. This input is used to check the interface between the photo-electric safety system and the machine. It electrically simulates an obstruction in the corresponding light curtain. While in the normal or run mode, the test input is jumpered (closed). It is opened and closed when used for testing. The machine’s control logic can verify that the safety output relays did, in fact, cycle, thereby exposing any fault before the next machine cycle.

This test should be conducted during a safe part of the machine cycle, or at the end of the cycle. While this input is open, power is removed from the corresponding light curtain (both emitter and receiver). Once the test input is closed, power is restored. The emitter and receiver may take a few seconds to re-synchronize, and, consequently, the safety outputs may take a few seconds to resume their normal state. The device connected to the test input should have a dry contact which is closed during the run mode and momentarily opened during the test mode.

The test inputs are located at terminals 7 and 8 for light curtain number one and terminals 19 and 20 for light curtain number two. The test input on terminals 19 and 20 is active for the TWO light curtain configuration ONLY. This input will have no effect in the single light curtain configuration. If these inputs are not used, jumpers should be installed on these terminals. (This feature is seldom used and, therefore, removable jumpers are installed at the factory).

7.0 TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Data</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltages</td>
<td>110 VAC</td>
<td>+ 10%</td>
</tr>
<tr>
<td></td>
<td>240 VAC</td>
<td>- 15%</td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>+ 10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 15%</td>
</tr>
<tr>
<td>Safety Outputs</td>
<td>Type</td>
<td>Positively guided, forced contact</td>
</tr>
<tr>
<td></td>
<td>Contacts</td>
<td>Two normally open (NO)</td>
</tr>
<tr>
<td></td>
<td>Rating</td>
<td>4.0 A resistive load @ 240VAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0 A resistive load @ 24VDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Hz maximum rate</td>
</tr>
<tr>
<td></td>
<td>Fusing</td>
<td>3.0 A recommended, by user</td>
</tr>
<tr>
<td>Dimensions</td>
<td>6.00 in. (152mm) long,</td>
<td>2.88 in. (73mm) wide,</td>
</tr>
<tr>
<td></td>
<td>4.65 in. (118mm) high</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approximately 2 lbs.</td>
<td></td>
</tr>
<tr>
<td>Enclosure Rating</td>
<td>IP 20</td>
<td></td>
</tr>
<tr>
<td>Enclosure Mounting</td>
<td>DIN EN 50 022-35</td>
<td></td>
</tr>
<tr>
<td>Connecting Terminals Type</td>
<td>Captive terminals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td>Two 2.5mm sq. (AWG 14)</td>
</tr>
</tbody>
</table>
Figure 54 - Input and Output Functions, Jumper Details and Terminal Numbers for the BSRUA-2

- **DC Input Power**
 - 2: +24V DC
 - 3: OV DC

- **AC Power Input**
 - 26: Live
 - 27: Ground
 - 28: Neutral

 FOR AC POWER
 - 110VAC: Jumper 29 to 31 and 30 to 32
 - 240VAC: Jumper 30 to 31

- **Redundant Safety Outputs**
 - 21: N/O Output 1
 - 22: N/O Output 2
 - 23: N/O Output 1
 - 24: N/O Output 1

- **Test Inputs (if used)**
 - 7
 - 8
 - 19
 - 20

- **JUMPERS**
 - **For ONE Light Curtain**
 - Jumper 1 to 2, 4 to 9
 - 5 to 14, and 7 to 8 (if not used)
 - **For TWO Light Curtains**
 - Jumper 1 to 2, 7 to 8 (if not used)
 - 19 to 20 (if not used)
Figure 55 – Interconnection Diagram for the BSRUA-2 ONE Light Curtain Configuration
Cable # | Cable Type | Color Code | Function | From | To |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect</td>
<td>Brown</td>
<td>+24V D.C.</td>
<td>1</td>
<td>15*</td>
</tr>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect</td>
<td>White</td>
<td>O.V. D.C.</td>
<td>2</td>
<td>16*</td>
</tr>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect</td>
<td>Blue</td>
<td>Test Out</td>
<td>3) Jumper 3 to 4, if not used</td>
<td>No Connection</td>
</tr>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect</td>
<td>Black</td>
<td>Test In</td>
<td>4) Jumper 4 to 3, if not used</td>
<td>No Connection</td>
</tr>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect</td>
<td>Gray</td>
<td>Ground</td>
<td>5</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>White</td>
<td>O.V. D.C.</td>
<td>1</td>
<td>16*</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Brown</td>
<td>24V D.C.</td>
<td>2</td>
<td>15*</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Green</td>
<td>Ground</td>
<td>3</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Yellow</td>
<td>Output 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Gray</td>
<td>Output 2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Pink</td>
<td>Data (-)</td>
<td>6) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Blue</td>
<td>Data (+)</td>
<td>7) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect</td>
<td>Shield</td>
<td>Ground</td>
<td>8</td>
<td>Ground</td>
</tr>
</tbody>
</table>

* Denotes Double Connection

Figure 56 – Wire Run List for the BSRUA-2 ONE Light Curtain Configuration
Figure 57 – Interconnection Diagram for the BSRUA-2 TWO Light Curtain Configuration
<table>
<thead>
<tr>
<th>CABLE #</th>
<th>CABLE TYPE</th>
<th>COLOR CODE</th>
<th>FUNCTION</th>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter #1 5 Pin Quick Disconnect</td>
<td>Brown</td>
<td>+24V D.C.</td>
<td>1</td>
<td>17*</td>
</tr>
<tr>
<td>W1</td>
<td>*</td>
<td>White</td>
<td>OV D.C.</td>
<td>2</td>
<td>18*</td>
</tr>
<tr>
<td>W1</td>
<td>*</td>
<td>Blue</td>
<td>Test Out</td>
<td></td>
<td>TWIST PAIR TOGETHER Black and Blue Wire</td>
</tr>
<tr>
<td>W1</td>
<td>*</td>
<td>Black</td>
<td>Test In</td>
<td></td>
<td>No Connection</td>
</tr>
<tr>
<td>W1</td>
<td>*</td>
<td>Gray</td>
<td>Ground</td>
<td>5</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter #2 5 Pin Quick Disconnect</td>
<td>Brown</td>
<td>+24V D.C.</td>
<td>1</td>
<td>15*</td>
</tr>
<tr>
<td>W1A</td>
<td>*</td>
<td>White</td>
<td>OV D.C.</td>
<td>2</td>
<td>16*</td>
</tr>
<tr>
<td>W1A</td>
<td>*</td>
<td>Blue</td>
<td>Test Out</td>
<td></td>
<td>TWIST PAIR TOGETHER Black and Blue Wire</td>
</tr>
<tr>
<td>W1A</td>
<td>*</td>
<td>Black</td>
<td>Test In</td>
<td></td>
<td>No Connection</td>
</tr>
<tr>
<td>W1A</td>
<td>*</td>
<td>Gray</td>
<td>Ground</td>
<td>5</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver #1 8 Pin Quick Disconnect</td>
<td>White</td>
<td>OV D.C.</td>
<td>1</td>
<td>18*</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Brown</td>
<td>24V D.C.</td>
<td>2</td>
<td>17*</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Green</td>
<td>Ground</td>
<td>3</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Yellow</td>
<td>Output 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Gray</td>
<td>Output 2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Pink</td>
<td>Data (-)</td>
<td>6) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Blue</td>
<td>Data (+)</td>
<td>7) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2</td>
<td>*</td>
<td>Shield</td>
<td>Ground</td>
<td>8</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver #2 8 Pin Quick Disconnect</td>
<td>White</td>
<td>OV D.C.</td>
<td>1</td>
<td>16*</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Brown</td>
<td>24V D.C.</td>
<td>2</td>
<td>15*</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Green</td>
<td>Ground</td>
<td>3</td>
<td>25, 27, or Ground</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Yellow</td>
<td>Output 1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Gray</td>
<td>Output 2</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Pink</td>
<td>Data (-)</td>
<td>6) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Blue</td>
<td>Data (+)</td>
<td>7) Isolate 6 & 7</td>
<td>No Connection</td>
</tr>
<tr>
<td>W2A</td>
<td>*</td>
<td>Shield</td>
<td>Ground</td>
<td>8</td>
<td>25, 27, or Ground</td>
</tr>
</tbody>
</table>

* Denotes Double Connection

Figure 58 – Wire Run List for the BSRUA-2 TWO Light Curtain Configuration
APPENDIX C – SRUB INTERFACE UNIT

1.0 GENERAL DESCRIPTION

The SRUB interface unit is designed to be incorporated into the user’s machine control system. It interfaces a GS-120 light curtain with the protected machine’s controls. The SRUB requires a +24 Vdc input, which must be common with the +24 Vdc supplied to the light curtain.

2.0 OPERATIONAL SEQUENCE AND LED STATUS DESCRIPTION

Note: The LEDs on the SRUB provide status indication of the output state of the safety relays only. No status indicators for the light curtain (emitter and receiver) are provided on this unit.

2.1 RESETTING OPTIONS

The SRUB interface can be configured for either a manual (latched) reset or automatic reset. In the manual reset mode, the safety outputs will go to the “off” state (opened) once the light curtain is obstructed and remain in the “off” state until the obstruction is removed and an external (user supplied) reset switch is activated. Once this reset sequence is completed, the safety outputs will resume the “on” state (closed). In the automatic reset mode, the safety outputs will follow the state of the light curtain (i.e., light curtain clear: outputs “on” (closed), light curtain obstructed: outputs “off” (opened). The operational sequence for both reset options is described below.

2.1.1 Manual Reset

When power is first applied to a light curtain system in manual reset mode:

• No LEDs will be illuminated until a manual (external) reset is applied.

• Once the external reset is applied, the two green LEDs (channel 1 and channel 2) will illuminate. (Provided the system is properly wired, no faults exist and the GS-120 emitter and receiver units have power and are properly aligned.) This indicates that both safety relay outputs are in the “on” or closed state. Both LEDs must be illuminated in order for the guarded machine to operate.

• These outputs will remain “on” (closed) until the light curtain is obstructed, faulty or misaligned. If an obstruction occurs, both green LEDs will go off and remain off. The LEDs will remain off, even if the light curtain is cleared, until a reset is applied.

• Once a reset is applied the two LEDs will illuminate, and the safety output relays will return to the “on” (closed) state.

2.1.2 Automatic Reset

When power is first applied to a light curtain system in automatic reset mode:

• Both green LEDs will illuminate and the safety output relays will be “on” (closed). The LEDs and outputs will remain on, provided the light curtain is clear.

• When the light curtain is obstructed, both LEDs will go off and the safety outputs contacts will also go to the “off” (open) state. They will remain off until the light curtain is clear.

• Once the obstruction is removed, both LEDs will illuminate and both safety output relays will return to the “on” state.

• If one of the output signals from the GS-120 light curtain is disconnected, the corresponding LED (channel 1 or channel 2) will go off. Both safety output relays will also go off and remain off. The system will not reset, even if the signal is restored. This condition is considered a catastrophic failure and requires a power-down/power-up cycle to restore normal operation (provided this failure has been rectified).

3.0 MECHANICAL INFORMATION

Figure 59 shows the case size and mounting dimensions of the SRUB interface unit. All dimensions are in millimeters. The unit must be mounted in an enclosure rated for the known operating environment. In most cases, the unit will fit into an existing machine’s control unit panel. The unit snaps into a common electrical mounting rail, style DIN EN 50 022-35.
4.0 ELECTRICAL CONNECTIONS

The SRUB controller has twenty integral connection terminals, in two rows, along the top of the unit. The terminals are marked according to their intended function. Each terminal is suitable for up to two (2) 2.5mm² (14 AWG) solid wires. Crimped ferrules or tinning must be used on all stranded wires. Figure 60 shows the system block diagram for the SRUB controller. Figure 61 shows the terminal numbers for the various input and output functions.

Particular attention should be given to the jumper placements for configuring MANUAL RESET and AUTOMATIC RESET. These jumpers must be installed properly in order to insure the correct and safe operation of the system.

Note: Improper installation of the jumpers may lead to false indication of the two green LEDs (channel 1 and channel 2). For example, both LEDs may be illuminated, indicating both safety outputs are “on” (closed), however, the outputs may actually be “off” (opened) without the proper jumper configuration.

Figures 62 and 63 show the interconnection diagram and the wire run list (WRL) and give the proper terminal numbers and their associated functions for the cabling between the GS-120 Series emitter and receiver units and the SRUB controller. All connections between the SRUB and the light curtain (emitter and receiver) must be made with the proper emitter and receiver cables (order separately).
4.1 MONITOR INPUT
(Manual Reset Mode ONLY)

The SRUB interface unit provides a machine monitor input. This monitor input receives a closed contact from the machine’s control circuit. Under normal conditions this input will be closed at all times. If a fault occurs external to the light curtain system, the machine’s control circuit must provide an open to this input. This open contact must remain open until the external fault is rectified. If the fault persists (input remains open) and the light curtain system is cycled while obstructed, the SRUB unit will not reset. Under this condition, all of the LEDs will be off. The system will be capable of resetting only after this monitor input is closed (machine/external fault corrected). If this feature is not used, the most common case, a jumper must be installed between X1 and X2 (when in the manual reset mode).

4.2 EXTERNAL RESET
(Manual Reset Mode ONLY)

In the manual reset mode, the SRUB Controller requires an external reset switch. This switch should be a normally-open, momentary-contact type. The location of the reset switch must be such that any person resetting the safety system must be able to completely see the hazardous area. The system should not be able to be reset if an operator is within the hazardous area, or if a fault exists in the safety system and/or machine control circuitry. The reset circuit of the SRUB Controller is designed to protect against a failure (failed closed) or by-pass of the reset button. The reset circuit requires a closure and return to an open position. Replacing the reset switch with a simple jumper will not convert the SRUB Controller to automatic reset operation. (For automatic reset operation, see the jumper configuration in Figure 61.)

4.3 MONITOR/AUXILIARY OUTPUT

A non-safety monitor/auxiliary output is also provided. This output is a normally-closed relay contact which is open when both safety outputs are closed (light curtain clear) and closed when both safety outputs are open (light curtain obstructed). This output can be used for display and status indication purposes. It must not be used for safety-related machine control and switching functions.

5.0 FUSES

The SRUB interface unit contains no user-accessible fuses. It is recommended that the +24V DC supply voltage be self-regulated and protected against any possible faults or surges from the SRUB controller. It is also recommended that external fuses be used to prevent the safety output contacts from welding (as described in section 4.1.1 of the main document).

6.0 TECHNICAL SPECIFICATIONS (SRUB)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>24 VDC at +/- 10%</td>
</tr>
<tr>
<td>Power consumption</td>
<td>approximately 5 VA</td>
</tr>
<tr>
<td>Contact configuration</td>
<td>2 N/O safety contact, 1 N/C auxiliary contact</td>
</tr>
<tr>
<td>Contact type</td>
<td>Relay positive guided</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-25ºC to +50ºC</td>
</tr>
<tr>
<td>Terminal/Housing style</td>
<td>DIN 40050 (Terminal IP20) (Housing IP40)</td>
</tr>
<tr>
<td>Conductor connection</td>
<td>2 x 2.5mm² solid wire DIN 26206 or 1 x 1.5mm² stranded wire with ferrule DIN 46228</td>
</tr>
<tr>
<td>Max switching capacity</td>
<td>1500 VA</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>250 VAC, 24 VDC Resistive load</td>
</tr>
<tr>
<td>Switching current</td>
<td>6A AC, 6A DC</td>
</tr>
</tbody>
</table>
Figure 61 Input and Output Functions, Jumper Details and Terminal Markings for the SRUB
Figure 62 – Light Curtain to SRUB Interconnection Diagram
<table>
<thead>
<tr>
<th>CABLE #</th>
<th>CABLE TYPE</th>
<th>COLOR CODE</th>
<th>FUNCTION</th>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKT5-612/XX</td>
<td>Emitter 5 Pin Quick Disconnect Molded/Pre-wired</td>
<td>Brown</td>
<td>+24V DC</td>
<td>1</td>
<td>+24V DC</td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td>White</td>
<td>OV DC</td>
<td>2</td>
<td>OV DC</td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td>Blue</td>
<td>Test Out</td>
<td>3</td>
<td>TWIST PAIR TOGETHER Black & Blue Wire</td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td>Black</td>
<td>Test In</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td></td>
<td>Gray</td>
<td>Ground</td>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>RKT8-09/XX</td>
<td>Receiver 8 Pin Quick Disconnect Molded/Pre-wired</td>
<td>White</td>
<td>OV DC</td>
<td>1</td>
<td>OV DC</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Brown</td>
<td>+24V DC</td>
<td>2</td>
<td>+24V DC</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Green</td>
<td>Ground</td>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Yellow</td>
<td>Output 1</td>
<td>4</td>
<td>T12</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Gray</td>
<td>Output 2</td>
<td>5</td>
<td>T22</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Pink</td>
<td>Data (-)</td>
<td>6</td>
<td>No Connection Isolate 6 & 7</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Blue</td>
<td>Date (+0)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>Shield</td>
<td>Ground</td>
<td>8</td>
<td>PE</td>
</tr>
<tr>
<td>User Supplied</td>
<td>User Defined</td>
<td></td>
<td>24V DC Power Supply</td>
<td>SRUB</td>
<td></td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td></td>
<td>+24V DC</td>
<td>-</td>
<td>A1 (+)</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td></td>
<td>OV DC</td>
<td>-</td>
<td>A2 (-)</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td></td>
<td>Ground</td>
<td>-</td>
<td>PE</td>
</tr>
</tbody>
</table>

Figure 63 – Wire Run List for the SRUB Interface Unit
APPENDIX D – SRUS INTERFACE UNIT

1.0 INTRODUCTION

Tapeswitch SRUS interface control units are designed to be used with GS-120 Light curtains to form a complete safety system. Full system installation instructions are supplied with the light curtains.

2.0 PRODUCT DESCRIPTION

The SRUS interface unit operates from 24Vdc supply. The unit is housed in a DIN rail mounting enclosure with 16 integral terminals. This unit is intended to be mounted in an existing electrical enclosure on the machine. This existing enclosure must be sealed to minimum rating of IP54.

3.0 PRINCIPLE OF OPERATION

When power is first applied, relays K1 & K2 are de-energized and there is no path through the safety contacts 13-14 and 23-24. When the reset switch is closed (Y1 - Y2) there will still be no path through the safety contacts. When the reset switch is opened again the path through the safety contacts is established.

If the light curtain is then obstructed, its outputs go off and the safety contacts open. Even when the light curtain is clear again the safety outputs remain open until the reset is repeated.

The unit provides both a manual or auto reset function.

In manual reset mode, the reset function provides start and restart interlock functions as follows:

START INTERLOCK - When power is applied to the system, the output relays cannot be energized until a reset signal has been applied.

RESTART INTERLOCK - Once the light curtain has been obstructed and the output relays have de-energized, they cannot be energized again until the light curtain has been cleared and a reset signal has been applied.

The start/restart interlock function must be incorporated somewhere in the machine safety system. However, this function may be provided by equipment other than the light curtain, i.e., it may already be included in the machine control circuit. In such a case, the light curtain interface should function in an auto-reset mode.

In auto-reset mode the output relays will be energized whenever power is applied to the system and the light curtain is clear, and the output relays will re-energize immediately after an interruption is cleared.

In manual or auto reset mode, reset will be prevented while the light curtain is obstructed, if there is a fault in the reset circuit or if the two output relays are in disparity.

The safety output contacts of the control unit are connected to the machine primary control element(s) in such a way that if either of the safety output relays is de-energized then the machine will be brought to rest regardless of the state of the other relay.

NOTE: A machine primary control element or MPCE is defined as ‘an electrically controlled element which directly controls the normal operating motion of a machine such that it is the last (in time) to operate when motion is initiated or arrested’.

In addition, where the machine control system has two MPCEs, these devices can be monitored by connecting normally closed auxiliary contacts from each MPCE in series with the reset input. Disparity between the two MPCEs will prevent a reset.

4.0 INSTALLATION

WARNING

TAPESWITCH SAFETY SYSTEMS ARE DESIGNED TO PROTECT OPERATORS WORKING AT OR NEAR DANGEROUS MACHINES. THEY CAN ONLY PERFORM THAT FUNCTION IF THEY ARE CORRECTLY FITTED AND INTERFACED TO A SUITABLE MACHINE. EVERY EFFORT HAS BEEN MADE TO PROVIDE COMPREHENSIVE AND ACCURATE INFORMATION. IT IS THE RESPONSIBILITY OF THE USER TO ENSURE THAT ALL PERSONS INVOLVED IN THE INSTALLATION OF THE PRODUCT HAVE THE KNOWLEDGE, TRAINING AND EXPERIENCE NECESSARY AND THAT THEY ARE FULLY CONVERSANT WITH ALL LAWS, RULES, REGULATIONS AND CODES OF PRACTICE PERTAINING TO THEIR TASK.

4.1 MECHANICAL

4.1.1 GENERAL

The SRUS interface unit should be mounted in the machine control unit on standard ‘top hat’ terminal rail type DIN EN 50 022-35. The machine control unit must provide sealing to IP54 according to IEC 529. The dimensions of the SRUS interface unit are shown in Figure 64.

Mechanical vibrations greater than 5g / 33Hz should be avoided when in transportation and when in operation.
4.1.2 RESET INPUT DEVICE

A normally open switch, preferably a 22 mm industrial pushbutton, should be used to provide the reset input. The switch should be housed in a suitable enclosure and should be mounted in such a position that it is safe from passing traffic and such that the person operating the switch can see all of the dangerous area.

4.2 ELECTRICAL

4.2.1 GENERAL

The connections for the SRUS interface unit are shown in Figure 67. Crimped ferrules should be fitted on all stranded wires. The exact cabling requirements are at the discretion of the installer and depend to a large extent on the siting of the various control system elements. In general, it is recommended that high voltage cables are routed away from low voltage cables.

4.2.2 LIGHT CURTAIN CONNECTION

Connect the fail-safe PNP inputs from the GS-120 light curtain terminals 4 & 5 (cable colors yellow & grey) to terminals S12 & S22, as shown in Figure 67.

4.2.3 POWER CONNECTION

Connect +24Vdc to terminal A1 (+) & connect 0V to terminal A2 (-) as shown in Figure 67. The power consumption is approximately 2.5VA.

4.2.4 RESET INPUT CONNECTION

If the machine has two MPCEs, a pair of normally closed auxiliary contacts from each MPCE can be connected in series as follows: For manual reset connect across terminals Y1 & Y2 see Figure 65. For Auto Reset connect across terminals Y1 & Y2 see Figure 66. This provides cross-monitoring of the MPCEs such that if they are in disparity due to a fault, reset will be prevented until the fault is rectified.

If there is no external monitoring, fit a link across the terminals.

4.2.5 SAFETY OUTPUT CONNECTION

Two normally open safety outputs are provided. In low to medium risk applications the machine is normally provided with a single MPCE. In such cases both safety outputs should be connected in series with the MPCE coil as shown in Figure 68. If the machine is fitted with two MPCEs one safety output should be connected in series with each MPCE coil as shown in Figure 69.

To protect the contacts of the safety output relays from the effects of switching inductive loads, it is recommended that arc suppressors should be fitted in parallel with the MPCE coils as shown Figures 68 and 69. Arc suppressors must not be fitted across the safety relay contacts.

To protect against the possibility of both safety outputs welding in, due to an overcurrent fault in the machine circuit, 6A quick blow, or 4A slow blow fuses should be fitted in series with the MPCE coils as shown in Figures 68 and 69. This limits the current through the safety output contacts to well below that which could cause the contacts to weld.

4.2.6 MONITOR OUTPUT

If auxiliary signal contacts are required, the normally open contacts across terminals 33 & 34 can be used.

NOTE: All outputs of the SRUS are safety outputs and can be used in the machine stop circuit.
The diagram shows manual reset function with the GS-120 guard. For automatic reset put a link between the contacts

- \textbf{BR1}
- \textbf{BR2}

and an additional link between

- \textbf{Y1}
- \textbf{Y2}

\textbf{Figure 67 – SRUS Connection Details}

\textbf{Figure 68 – Safety Output Connection (Single MPCE)}

\textbf{Figure 69 - Safety Output Connection (Two MPCEs)}
5.0 TECHNICAL SPECIFICATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>24 Vdc +/- 10%</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>approx. 2.5 VA</td>
</tr>
<tr>
<td>Response Time</td>
<td>< 30ms</td>
</tr>
<tr>
<td>Temperature Range:</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>-25°C to +55°C</td>
</tr>
<tr>
<td>Reset Function</td>
<td>Manual or Auto</td>
</tr>
<tr>
<td>Contact Configuration</td>
<td>3 x N/O safety contacts</td>
</tr>
<tr>
<td>Contact Type</td>
<td>Relay positive guided</td>
</tr>
<tr>
<td>Max. Switching Capacity</td>
<td>1500 VA (resistand load)</td>
</tr>
<tr>
<td>Max. Switching Capacity</td>
<td>250 Vac, 24 Vdc</td>
</tr>
<tr>
<td>Switching Current</td>
<td>6A ac, 6A dc</td>
</tr>
<tr>
<td>Enclosure:</td>
<td>DIN 40050 (Terminal IP20) (Housing IP40)</td>
</tr>
<tr>
<td>Protection Rating</td>
<td>2 x 2.5mm² solid wire DIN 26206 or</td>
</tr>
<tr>
<td>Terminal Capacity</td>
<td>1 x 1.5mm² stranded wire with ferrule DIN 46228</td>
</tr>
<tr>
<td>Material</td>
<td>Self-extinguishing according to UL 94 V-0</td>
</tr>
</tbody>
</table>
APPENDIX E – C6 MULTIFUNCTION INTERFACE CONTROLLER

1.0 PRODUCT DESCRIPTION

The C6 Multifunction Interface Controller serves as an interface between various Tapeswitch low-voltage sensors and an end-user device (machine and/or process control). It is ideal for existing machines in end-user and OEM applications. The C6 Multifunction Interface Controller is designed to monitor up to six sensor zones comprised of a combination of 1 to 3 GS-120 Light Curtains and/or 1 to 6 other sensing devices. It provides the necessary power to the GS-120 emitter and receiver units, and monitors the output signals. In addition to the light curtains, the C6 is specifically engineered for operation with various pressure-sensitive, normally-open switches such as ribbon switches, sensing edges/ bumpers and switching mats.

The C6 Controller provides constant monitoring of all sensing devices. In the event of a failure within a sensor or its cable (open or short circuit), the controller automatically detects the failure. In addition to the ability to detect a failure within the sensor or its cabling, the C6 is designed to detect a failure within the controller itself. The C6 Controller is a fully self-contained unit within a metal enclosure. See Figure 70. It is intended to be wall mounted and has six knockouts capable of accepting standard 1/2" or 3/4" conduit. It will accept an input power of source range of 85 to 264 Vac at an input frequency range of 47 to 63 Hz. The unit will also accept a regulated 24 Vdc supply.

The C6 Controller provides the option of setting each zone for automatic or manual reset. To manually reset the controller, a key switch is provided on the front panel.

The controller provides two redundant safety output relay contacts (dry contact or voltage free) in which the output can be configured as normally-open (closed when the relay is energized) or normally-closed (open when the relay is energized). When the output relays are configured as normally-open, the two closed contacts will open when the sensing device is actuated (i.e., safety mat is stepped on), or should a fault occur within the safety device, or in the event that the power is removed. The outputs will remain open until the sensing device is clear and reset is applied. When the output relays are configured as normally-closed, the two open contacts will close when the sensing device is actuated (i.e., safety mat is stepped on), or should a fault occur within the safety device, or in the event that the power is removed. The outputs will remain closed until the sensing device is clear and reset is applied.

When the zone(s) is set in Manual Mode, the safety outputs will remain open until the sensing device is clear and a reset signal is applied. When the zones are set to AUTO, the safety outputs will reset automatically after the sensing device is clear.

Each of the six zones is equipped with three indicator lights: Manual Mode, Output On and Output Off, providing the status of each zone. The C6 Controller also has non-safety monitor output relays for each zone. They are Form C (normally-open, common, normally-closed) contact arrangements. The monitor relays are intended for status purposes only.

2.0 INSTALLATION INSTRUCTIONS

A complete technical description of the C6 Multifunction Controller, including installation instructions, can be found in the separate C6 Technical Manual which comes with the unit (part number 0480).

Figure 70 – C6 Multifunction Controller Outline Drawing
APPENDIX F – GDC-1 24 VDC POWER SUPPLY

1.0 PRODUCT DESCRIPTION

The GDC-1 power supply converts an ac voltage input to +24 Vdc, which can be used to power a GS-120 light curtain (emitter and receiver) and an SRUB Controller. It will accept a wide range of input voltages, from 88 to 264 Vac, automatically. No jumpers or voltage strapping is necessary. The ac input is fuse-protected against current surges or short circuits within the high-voltage side of the unit. A green LED will illuminate, indicating that +24 Vdc is present. The +24 Vdc output voltage is adjustable with a small Philip’s head screwdriver. The output voltage should be adjusted with a calibrated meter, once all of the loads are connected. The dimensions and terminal markings are shown in Figure 71. The Technical Specifications are shown in Figure 72.

Connections:
1. L
2. N
3. PE
4. OV
5. +24V

![Figure 71 GDC-1 Dimensions and Terminal Markings](image)

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>88 to 264 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>47 to 63 Hz</td>
</tr>
<tr>
<td>Input Current</td>
<td>1.3 A at 115 Vac</td>
</tr>
<tr>
<td></td>
<td>0.8 A at 230 Vac</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>33 A at 230 Vac, cold start</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>24 V, adjustable ± 10%</td>
</tr>
<tr>
<td>Output Current</td>
<td>2.2 A</td>
</tr>
<tr>
<td>Ripple</td>
<td>120 mv p-p</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>110 to 150% of rated output power with automatic recovery</td>
</tr>
<tr>
<td>Overvoltage Protection</td>
<td>Auto recovery after fault condition is removed</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-25 °C to +70 °C</td>
</tr>
<tr>
<td>MTBF</td>
<td>228,000 hours</td>
</tr>
<tr>
<td>EMC</td>
<td>EN 55022 (C15PR22)</td>
</tr>
<tr>
<td></td>
<td>EN 61000-3-2, -3</td>
</tr>
<tr>
<td>Safety Standards</td>
<td>UL 60950-1, TUV EN 60950-1 approved</td>
</tr>
</tbody>
</table>

![Figure 72 – GDC-1 Technical Specifications](image)
APPENDIX G – LAT LASER ALIGNMENT TOOL

1.0 PRODUCT DESCRIPTION

The Laser Alignment Tool provides a visual indication of the alignment between a GS-120 emitter and receiver. It is particularly useful for long range installations and installations requiring mirrors. The Laser Alignment Tool simply snaps into one of the GS-120 sensing units (emitter or receiver). See Figure 73. It projects a beam of light across the sensing field and places a targeting dot on the (emitter or receiver). The dot gives the installer visual feedback on the accuracy of the alignment. The laser can be focused by simply rotating the beam projection head. The beam is kept on by applying inward pressure to the projector head until the “on” switch actuates.

For optimum alignment, the laser target dot should be located at the center of the clear lens of the emitter or receiver. Initially, the target dot may not land on the emitter or receiver at all. In this case, place a sheet of cardboard or a similar target behind the unit in order to provide a larger area for the laser dot to land. Once the laser dot is found, it will give the installer an indication as to which direction the sensing units need to be adjusted.

The Laser Alignment Tool is for initial set-up ONLY. It can not be used during normal machine operation since it will obstruct the light curtain. The laser MUST NOT BE POINTED OR DIRECTED TOWARDS ANY PERSONS. Figure 74 shows the outline dimensions, and Figure 75 lists the technical specifications.

<table>
<thead>
<tr>
<th>Laser Type</th>
<th>Class IIIa Laser Diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Output</td>
<td><5mW</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>640nm (± 10)</td>
</tr>
<tr>
<td>Beam Diameter</td>
<td>Adjustable</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>2-LR44 Alkaline batteries (incl)</td>
</tr>
<tr>
<td>Operating Time</td>
<td>2.5 hours continuous</td>
</tr>
<tr>
<td>Dimensions</td>
<td>0.40” Dia x 2.5” L</td>
</tr>
<tr>
<td>Weight</td>
<td>2.0 oz. with batteries</td>
</tr>
<tr>
<td>Switch</td>
<td>Momentary On/Off</td>
</tr>
</tbody>
</table>

Figure 75 – LAT Technical Specifications

Figure 73 – LAT Alignment Tool Setup

Figure 74 – LAT Dimensions

ALIGNMENT TOOL SLIDED UP & DOWN BY THE THUMB WHEEL HANDLES

BEAM CAN BE FOCUSED FOR ANY DISTANCE

Laser Pointer